Toxic metal contamination is one of the major environmental concerns of the recent decade, due to the large application of metals in industrial, healthcare and commercial products, even in the form of nanostructures and nanomaterials. Nevertheless, the effects of silver (Ag) on plants have not yet thoroughly elucidated. Therefore, suspension cell cultures of grapevine were used as a model for investigating silver toxicity. To do this, oxidative stress and programmed cell death (PCD), evaluated as reactive oxygen species production, caspase-3-like activity and ubiquitin-proteasome system, were investigated. As a result, the highest concentration (10 μM) of Ag caused a rapid (within 24 h) induction of PCD (approx. 80%), accompanied by generation of reactive oxygen species and activation of caspase-3-like activity. In the presence of specific inhibitor of this enzyme, a partial recovery of cell viability and a strong inhibition of caspase-3-like activity was observed. In addition, silver-induced PCD was accompanied either by increase of poly-ubiquitin conjugated proteins and degradation of subunit PBA1 of the proteasome 20S core, similarly to what found for metal-induced neurotoxicity in animals. The present study shows that silver could induce PCD in grapevine suspension cell cultures, mediated by caspase-3-like activity and oxidative stress. These effects were associated to accumulation of poly-ubiquitin conjugated proteins, suggesting the impairment of ubiquitin-proteasome complex, confirmed by the decrease of the PBA1 subunit. These findings indicate that animal and plant cells could share a common pathway in response to toxic metal, which involves PCD and disassembling of proteasome complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2018.12.003DOI Listing

Publication Analysis

Top Keywords

caspase-3-like activity
20
suspension cell
12
cell cultures
12
grapevine suspension
8
programmed cell
8
cell death
8
toxic metal
8
oxidative stress
8
reactive oxygen
8
oxygen species
8

Similar Publications

Background/objectives: Regucalcin (RGN) is a calcium-binding protein and an oestrogen target gene, which has been shown to play essential roles beyond calcium homeostasis. Decreased RGN expression was identified in several cancers, including prostate cancer (PCa). However, it is unknown if the loss of RGN is a cause or a consequence of malignancy.

View Article and Find Full Text PDF

Diosgenin is a phytosteroid sapogenin with reported antitumoral activity. Despite the evidence indicating a lower incidence of prostate cancer (PCa) associated with a higher consumption of phytosteroids and the beneficial role of these compounds, only a few studies have investigated the effects of diosgenin in PCa, and its mechanisms of action remain to be disclosed. The present study investigated the effect of diosgenin in modulating PCa cell fate and glycolytic metabolism and explored its potential interplay with G protein-coupled oestrogen receptor (GPER).

View Article and Find Full Text PDF

Enhanced suppression effects on Microcystis aeruginosa by combining hydrogen peroxide and intermittent UVC irradiation: The importance of triggering advanced oxidation process within cells.

J Hazard Mater

October 2023

Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China. Electronic address:

Article Synopsis
  • * The first UVC treatment allows HO to enter algal cells, initiating an advanced oxidation process that gets activated with the second round of UVC, causing significant cellular damage.
  • * This intermittent UVC/HO treatment disrupts the photosynthetic electron transport chain more effectively than conventional methods, leading to increased production of reactive oxygen species (ROS) that trigger cell death, making it a promising eco-friendly approach to control harmful algal blooms.
View Article and Find Full Text PDF

Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy.

Appl Biochem Biotechnol

October 2024

Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.

Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown.

View Article and Find Full Text PDF

Reciprocal inhibition of autophagy and Botrytis cinerea-induced programmed cell death in 'Shine Muscat' grapes.

Food Chem

December 2024

College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China. Electronic address:

Botrytis cinerea causes gray mold, decreasing the quality of table grapes. The berry response to B. cinerea infection was explored in present study, focusing on the relationship between presence of autophagy and programmed cell death (PCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!