Physiological characterization of poly-β-hydroxybutyrate accumulation in the moderately thermophilic hydrogen-oxidizing bacterium Hydrogenophilus thermoluteolus TH-1.

J Biosci Bioeng

Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan. Electronic address:

Published: June 2019

Hydrogenophilus thermoluteolus strain TH-1 is a thermophilic hydrogen-oxidizing microorganism that has the highest growth rate among autotrophs. Genomic analysis revealed that this strain comprises the complete gene set for poly-β-hydroxybutyrate (PHB) synthesis, i.e., three copies of acetyl-CoA acetyltransferase and polyhydroxyalkanoate synthase and one copy of acetoacetyl-CoA reductase and 3-hydroxyacyl-CoA dehydrogenase/3-hydroxybutyryl-CoA epimerase. An investigation on PHB accumulation in strain TH-1 demonstrated that PHB accumulation was induced by nitrogen limitation under autotrophic as well as heterotrophic conditions. This strain accumulated up to 430.4 ± 14.3 mg L PHB during a 3-h incubation under nitrogen-limited heterotrophic conditions. The highest PHB accumulation rates under autotrophic and heterotrophic conditions were 38.6% (w/w) of the dry cells after a 6-h induction and 53.8% after 3 h, respectively. Although PHB granules started to accumulate after 15 min of nitrogen limitation under heterotrophic conditions, a drastic decrease of PHB was observed after 9 h of induction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2018.11.011DOI Listing

Publication Analysis

Top Keywords

heterotrophic conditions
16
phb accumulation
12
thermophilic hydrogen-oxidizing
8
hydrogenophilus thermoluteolus
8
strain th-1
8
nitrogen limitation
8
phb
7
physiological characterization
4
characterization poly-β-hydroxybutyrate
4
accumulation
4

Similar Publications

Structural Basis of the Bifunctionality of Marinobacter salinexigens ZYF650 Glucosylglycerol Phosphorylase in Glucosylglycerol Catabolism.

J Biol Chem

December 2024

Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.

2-O-α-Glucosylglycerol (GG) is a natural heteroside synthesized by many cyanobacteria and a few heterotrophic bacteria under salt stress conditions. Bacteria produce GG in response to stimuli and degrade it once the stimulus diminishes. Heterotrophic bacteria utilize GG phosphorylase (GGP), a member of the GH13_18 family, via a two-step process consisting of phosphorolysis and hydrolysis for GG catabolism.

View Article and Find Full Text PDF

Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms.

Bioresour Technol

December 2024

Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:

This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.

View Article and Find Full Text PDF

Determination of optimum probiotic dosage for the culture of whiteleg shrimp, in an indoor system.

MethodsX

December 2024

Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia.

Determining the optimum application dosage of probiotic in biofloc system is often challenging because the microbial community seems to exert similar effects irrespective of their dosages. It is however noted that certain dosages promote higher yield in shrimp culture more effectively. Principal component analysis was adopted to identify these optimum dosages where 1-way ANOVA could not clearly identify due to the effects of microbial community.

View Article and Find Full Text PDF

As a result of human activity, Earth's atmosphere and climate are changing at an unprecedented pace. Models based on short-term experiments predict major changes will occur in marine phytoplankton communities in the future ocean, but rarely consider how evolution or interactions with other microbes may influence these changes. Here we experimentally evolved several phytoplankton in co-culture with a heterotrophic bacterium, Alteromonas sp.

View Article and Find Full Text PDF

Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.

J Environ Manage

December 2024

Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!