Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glycosaminoglycans (GAGs) play an integral role in low-density lipoprotein (LDL) retention in the vascular intimal layer and have emerged as attractive therapeutic targets for atherosclerosis. GAG biosynthesis involves the cooperation of numerous enzymes. Chondroitin sulfate N-acetylgalactosaminyltransferase-2 (ChGn-2) is a vital Golgi transferase that participates in enzymatic elongation of GAGs. Here, we investigated the effects of ChGn-2 gene deletion on the development of atherosclerosis. Partial carotid artery ligation was performed on ChGn-2/LDLr and ChGn-2/LDLr mice to induce diffuse intimal thickening (DIT). Aortic smooth muscle cells (ASMCs) were isolated to investigate cellular LDL binding and migration. Histological analysis of human coronary artery sections revealed that ChGn-2 was expressed in early and advanced atherosclerotic lesions. Deletion of the ChGn-2 gene significantly reduced LDL retention in the DIT mouse model. Furthermore, LDL binding, visualized using rhodamine-labeled LDLs, was dramatically reduced. Interestingly, a functional assay of ASMCs prepared from ChGn-2 mice displayed abrogation of platelet-derived growth factor (PDGF)-mediated migration via reduced PDGF receptor phosphorylation. Taken together, these findings indicate that ChGn-2 is functionally involved in the progression of atherosclerosis both in its early and advanced stages. Therefore, ChGn-2 may serve as a plausible target to treat atherosclerotic-related diseases in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.12.068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!