Bisphenol A (BPA), a representative endocrine disrupting compound, exists ubiquitously in the aquatic environment. Several studies on fish have validated the role of BPA in the lipid metabolism. However, the action mechanisms of BPA on lipid metabolism have been little studied. To clarify how BPA regulates lipid metabolism, Gobiocypris rarus were exposed to 15 μg/L BPA for 3 and 6 weeks. Results showed that BPA altered lipid content by regulating some metabolism-related genes. The BPA's inhibiting effect on fatty acid β-oxidation might be stronger than on lipid synthesis. BPA disturbed the expression of acaca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and cpt1α (carnitine palmitoyltransferase 1α) by altering the sterol regulatory element binding protein 1 (SREBP-1) binding to their sterol regulatory elements (SREs). Our result also revealed that DNA methylation in the 5' flanking regions of cpt1α could perturb the SREBP-1 binding adjacent to its SRE in females under BPA exposure. Besides, BPA exposure led to gender-specific effect on fatty acid β-oxidation in G. rarus. This will contribute to our understanding of the regulation mechanisms of BPA on lipid metabolism in fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2018.12.011 | DOI Listing |
Sci Rep
December 2024
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!