In order to investigate essential molecular causes for hearing loss and mutation frequency of deafness-related genes, 1315 newborns who did not pass the Newborn Hearing Screening (NHS) (audio-no-pass) and 1000 random-selected infants were subjected to detection for 101 hotspot mutations in 18 common deafness-related genes. Totally, 23 alleles of 7 deafness genes were detected out. Significant difference (χ = 25.320, p = 0.000) existed in causative mutation frequency between audio-no-pass group (81/1315, 6.160%) and random-selected cohort (18/1000, 1.80%). Of the genes detected out, GJB2 gene mutation was with significant difference (χ = 75.132, p = 0.000) between audio-no-pass group (417/1315, 31.711%) and random-selected cohort (159/1000, 15.900%); c.109G > A was the most common allele, as well as the only one with significantly different allele frequency (χ = 79.327, p = 0.000) between audio-no-pass group (392/1315, 16.84%) and random-selected cohort (140/1000, 7.55%), which suggested c.109G > A mutation was critical for newborns' hearing loss. This study performed detection for such a large scale of deafness-associated genes and for the first time compared mutations between audio-no-pass and random-recruited neonates, which not only provided more reliable DNA diagnosis result for medical practioners and enhanced clinical care for the newborns, but gave more accurate estimation for mutation frequency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijporl.2018.11.008 | DOI Listing |
PLoS One
January 2025
Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Taylorella equigenitalis is the causative agent of sexually transmitted contagious equine metritis. Infections manifest as cervicitis, vaginitis and endometritis and cause temporary infertility and miscarriages of mares. While previous studies have analyzed this organism for various parameters, the evolutionary dynamics of this pathogen, including the emergence of antibiotic resistance, remains unresolved.
View Article and Find Full Text PDFPharmacoeconomics
January 2025
Division of Pulmonology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Road, Tainan, 704, Taiwan.
Background And Objective: Approximately half of lung adenocarcinomas in East Asia harbor epidermal growth factor receptor (EGFR) mutations. EGFR testing followed by tissue-based next-generation sequencing (NGS), upfront tissue-based NGS, and complementary NGS approaches have emerged on the front line to guide personalized therapy. We study the cost effectiveness of exclusionary EGFR testing for Taiwanese patients newly diagnosed with advanced lung adenocarcinoma.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Background: The common APOE2/E3/E4 polymorphism, the strongest risk factor for Alzheimer's disease (AD), is determined by two-site haplotypes at codons 112 (Cys>Arg) and 158 (Arg>Cys), resulting into six genotypes. Due to strong linkage disequilibrium between the two sites, 3 of the 4 expected haplotypes (E2, E3, E4) have been observed and extensively studied in relation to AD risk. Compared to the most common haplotype of E3 (Cys112 - Arg158), E4 (Arg112 - Arg 158) and E2 (Cys112 - Cys158) haplotypes are determined by a single-point mutation at codons 112 and 158, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!