Transdermal administration of drugs improves their bioavailability and is capable of systemic and local treatment. To improve the skin permeability of drugs, nano-sized systems have attracted attention as drug carriers for transdermal drug delivery system. We considered that silk fibroin composed of a crystalline region with many hydrophobic amino acids and an amorphous region with many hydrophilic amino acids was useful as a carrier for transdermal administration of a drug because of the balance between hydrophilicity and hydrophobicity. In this study, silk fibroin nanoparticles with mean volume diameters of 42.3 nm were successfully prepared, and storage stability was confirmed by storing the nanoparticle suspension at 4, 32, and 37 °C for a week. At any storage temperature, the mean volume diameter and standard deviation were stable. The polydispersity indexes were 0.19-0.23, and no specific trends were observed. Then, to investigate the transdermal delivery route of the silk fibroin nanoparticles, skin permeability in vivo was evaluated using mice. Six hours after administration, fluorescent substances were observed in the dermis in addition to the stratum corneum, hair follicles and the epidermis around them. This result indicated that fibroin nanoparticles with the mean volume diameter of 40-nm penetrated the stratum corneum and was delivered deep into the skin. Therefore, it was suggested that small nanoparticles prepared using silk fibroin are useful for drug delivery to the dermis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.12.012 | DOI Listing |
Adv Mater
January 2025
Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia.
The remarkable toughness (>70 MJ m) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China. Electronic address:
Exogenous genes are inserted into target cells during gene therapy in order to compensate or rectify disorders brought on by faulty or aberrant genes. However, gene therapy is still in its early stages because of its unsatisfactory therapeutic effects which are mainly due to low transfection efficiency of vectors, high toxicity, and poor target specificity. A natural polymer with numerous bioactive sites, good mechanical qualities, biodegradability, biocompatibility, and processability called silk fibroin has gained attention as a possible gene therapy vector.
View Article and Find Full Text PDFSmall
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!