The functional role of polyamines in eukaryotic cells.

Int J Biochem Cell Biol

Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.

Published: February 2019

Polyamines, consisting of putrescine, spermidine and spermine are essential for normal cell growth and viability in eukaryotic cells. Since polyamines are cations, they interact with DNA, ATP, phospholipids, specific kinds of proteins, and especially with RNA. Consequently, the functions of these acidic compounds and some proteins are modified by polyamines. In this review, the functional modifications of these molecules by polyamines are presented. Structural change of specific mRNAs by polyamines causes the stimulation of the synthesis of several different proteins, which are important for cell growth and viability. eIF5 A, the only known protein containing a spermidine derivative, i.e. hypusine, also functions at the level of translation. Experimental results thus far obtained strongly suggest that the most important function of polyamines is at the level of translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2018.12.012DOI Listing

Publication Analysis

Top Keywords

eukaryotic cells
8
cells polyamines
8
cell growth
8
growth viability
8
level translation
8
polyamines
7
functional role
4
role polyamines
4
polyamines eukaryotic
4
polyamines consisting
4

Similar Publications

Introduction: Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of Mycobacterium tuberculosis. We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques.

View Article and Find Full Text PDF

Cell therapies, including tumor antigen-loaded dendritic cells used as therapeutic cancer vaccines, offer treatment options for patients with malignancies. We evaluated the feasibility, safety, immunogenicity, and clinical activity of adjuvant vaccination with Wilms' tumor protein (WT1) mRNA-electroporated autologous dendritic cells (WT1-mRNA/DC) in a single-arm phase I/II clinical study of patients with advanced solid tumors receiving standard therapy. Disease status and immune reactivity were evaluated after 8 weeks and 6 months.

View Article and Find Full Text PDF

The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation.

View Article and Find Full Text PDF

Structural insights into actin filament turnover.

Trends Cell Biol

January 2025

Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. Electronic address:

The dynamic turnover of actin filaments drives the morphogenesis and migration of all eukaryotic cells. This review summarizes recent insights into the molecular mechanisms of actin polymerization and disassembly obtained through high-resolution structures of actin filament assemblies. We first describe how, upon polymerization, actin subunits age within the filament through changes in their associated adenine nucleotide.

View Article and Find Full Text PDF

Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!