A one-pot analysis approach to simplify measurements of protein stability and folding kinetics.

Biochim Biophys Acta Proteins Proteom

Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC. Electronic address:

Published: March 2019

To achieve a good understanding of the characteristics of a protein, it is important to study its stability and folding kinetics. Investigations of protein stability have been recently applied to drug-target identification, drug screening, and proteomic studies. The efficiency of the experiments performed to study protein stability and folding kinetics is now a crucial factor that needs to be optimized for these potential applications. However, the standard procedures used to carry out these experiments are usually complicated and time consuming. Large number of measurements is the bottleneck that limits the application of protein folding to large-scale experiments. To overcome this limitation, we developed a method denoted as "one-pot analysis" which is based on taking a single measurement from a mixture of samples rather than from every sample. We combined one-pot analysis with pulse proteolysis to determine the effects of the binding of maltose to maltose-binding protein on the protein folding properties. After carrying out a simple optimization, we demonstrated that protein stability or unfolding kinetics could be measured accurately with just one detection measurement. We then further applied the optimized conditions to cellular thermal shift assay (CETSA). Combining one-pot analysis with CETSA led to a successful determination of the effects of the binding of methotrexate to dihydrofolate reductase in HCT116 cancer cells. Our results demonstrated the applicability of one-pot analysis to energetics-based methods for studying protein folding. We expect the combination of one-pot analysis and energetics-based methods to significantly benefit studies such as drug-target identification, proteomic investigations, and drug screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2018.12.006DOI Listing

Publication Analysis

Top Keywords

one-pot analysis
20
protein stability
16
stability folding
12
folding kinetics
12
protein folding
12
protein
9
drug-target identification
8
drug screening
8
effects binding
8
analysis energetics-based
8

Similar Publications

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

Boldenone and Testosterone Production from Phytosterol via One-Pot Cascade Biotransformations.

J Fungi (Basel)

November 2024

Federal Research Center, Pushchino Center for Biological Research of Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Prospekt Nauki, 5, 142290 Pushchino, Moscow Region, Russia.

Testosterone (TS) and its 1(2)-dehydrogenated derivative boldenone (BD) are widely used in medicine, veterinary science and as precursors in organic synthesis of many therapeutic steroids. Green production of these compounds is possible from androstenedione (AD) enzymatically, or from phytosterol (PS) using fermentation stages. In this study, the ascomycete sp.

View Article and Find Full Text PDF

In this paper, a new carbon dot (R1-CDs) was prepared by one-pot hydrothermal method by using 1,8-diaminonaphthalene and o-phthalic acid (o-PA) as precursors. Due to the high purity of R1-CDs, NMR analysis was performed to identify the types of H and C atoms in their graphene sheets. From our research findings, three important information was disclosed such as (1) five types H atoms are presented in R1-CDs; (2) 18 kinds of C atoms in the graphene sheets are observed, and 8 kinds of them are quaternary atoms, and 10 kinds of carbon atoms as tertiary one; (3) functional groups of -COOH and -NH2 from precursors cannot be inherited into the edges or defect sites of graphene sheet.

View Article and Find Full Text PDF

Design of Label-Free DNA Light-Up Aptaswitches for Multiplexed Biosensing.

ACS Sens

December 2024

Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada.

We present a straightforward design approach to develop DNA-based light-up aptasensors. We performed the first systematic comparison of DNA fluorescent light-up aptamers (FLAPs), revealing key differences in affinity and specificity for their target dyes. Based on our analysis, two light-up aptamers emerged with remarkable specificity, fluorescence enhancement, and functionality in diverse environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!