Pressure overload, which is typical of hypertension, is known to evoke alterations not only in the morphology of the heart but also in the preference of myocardial energetic substrates usage. Nowadays, the endocannabinoid system (ECS) serves as a potential therapeutic target for cardiovascular disorders and, simultaneously, affects whole body metabolism homeostasis. Therefore, an open question is whether ECS, apart from decreasing blood pressure, also affects cardiac muscle metabolism in hypertensive conditions. All experiments were conducted on a genetic model of primary hypertension i.e. spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats (WKY) served as a normotensive control. ECS was chronically activated by 2-weeks intraperitoneal injections of fatty acid amide hydrolase (FAAH) inhibitor - URB597. Lipid analyses in the left ventricle and serum were based on ex vivo heart perfusion in Langendorff perfusion system, thin layer chromatography, and gas liquid chromatography. The total expression of selected proteins was determined using Western blot as well as immunohistochemical techniques. As expected, URB597 markedly reduced systolic as well as mean blood pressures in SHRs. Moreover, prolonged FAAH inhibition resulted in stimulation of H-palmitate uptake and incorporation into different lipid fractions in cardiomyocytes in the hypertensive as well as normotensive conditions. An increase in fatty acid oxidation caused by URB597 treatment was observed only in WKY rats, but not SHRs, and was accompanied by an elevation in peroxisome proliferator-activated receptor alpha (PPARα) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) expressions. Chronic activation of ECS significantly upregulates palmitate uptake and its esterification but not oxidation in the SHR's myocardium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemphyslip.2018.12.007 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.
View Article and Find Full Text PDFExp Physiol
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!