Background: Soil salinity is widespread in rice-producing areas globally, restricting both vegetative growth and grain yield. Attempts to improve the salt tolerance of Asian rice, Oryza sativa-the most salt sensitive of the major cereal crops-have met with limited success, due to the complexity of the trait and finite variation in salt responses among O. sativa lines. Naturally occurring variation among the more than 20 wild species of the Oryza genus has great potential to provide breeders with novel genes to improve resistance to salt. Here, through two distinct screening experiments, we investigated variation in salinity tolerance among accessions of two wild rice species endemic to Australia, O. meridionalis and O. australiensis, with O. sativa cultivars Pokkali and IR29 providing salt-tolerant and sensitive controls, respectively.

Results: Rice plants were grown on soil supplemented with field-relevant concentrations of NaCl (0, 40, 80, and 100 mM) for 30 d, a period sufficient to reveal differences in growth and physiological traits. Two complementary screening approaches were used: destructive phenotyping and high-throughput image-based phenotyping. All genotypes displayed clear responses to salt treatment. In the first experiment, both salt-tolerant Pokkali and an O. australiensis accession (Oa-VR) showed the least reduction in biomass accumulation, SES score and chlorophyll content in response to salinity. Average shoot Na/K values of these plants were the lowest among the genotypes tested. In the second experiment, plant responses to different levels of salt stress were quantified over time based on projected shoot area calculated from visible red-green-blue (RGB) and fluorescence images. Pokkali grew significantly faster than the other genotypes. Pokkali and Oa-VR plants displayed the same absolute growth rate under 80 and 100 mM, while Oa-D grew significantly slower with the same treatments. Oa-VR showed substantially less inhibition of growth in response to salinity when compared with Oa-D. Senescence was seen in Oa-D after 30 d treatment with 40 mM NaCl, while the putatively salt-tolerant Oa-VR had only minor leaf damage, even at higher salt treatments, with less than a 40% increase in relative senescence at 100 mM NaCl compared to 120% for Oa-VR.

Conclusion: The combination of our two screening experiments uncovered striking levels of salt tolerance diversity among the Australian wild rice accessions tested and enabled analysis of their growth responses to a range of salt levels. Our results validate image-based phenotyping as a valuable tool for quantitative measurement of plant responses to abiotic stresses. They also highlight the potential of exotic germplasm to provide new genetic variation for salinity tolerance in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303227PMC
http://dx.doi.org/10.1186/s12284-018-0257-7DOI Listing

Publication Analysis

Top Keywords

salinity tolerance
12
salt
9
australian wild
8
salt tolerance
8
screening experiments
8
variation salinity
8
wild rice
8
image-based phenotyping
8
response salinity
8
plant responses
8

Similar Publications

Coastal lagoons are vital yet vulnerable marine ecosystems. This study analyzes a five-year dataset to evaluate changes in water quality and their impacts on biota in Pinqing Lagoon (PQL). Seasonal surveys conducted from 2019 to 2023 across 14 sites revealed significant variability in water and sediment quality parameters.

View Article and Find Full Text PDF

Bacillus licheniformis B410 Alleviates Inflammation Induced by Lipopolysaccharide and Salmonella by Inhibiting NF-κB and IRF Signaling Pathways in Macrophages.

Probiotics Antimicrob Proteins

December 2024

College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China.

Foodborne bacterial enteritis is a common clinical disease, and its incidence has risen globally. To screen for functional Bacillus strains with anti-inflammatory properties, tolerance to acid and bile salts, and antagonism against Salmonella, 22 strains of Bacillus were employed as candidate strains in this study. An inflammatory cell model was established using J774-Dual NF-κB/IRF reporter macrophages to identify anti-inflammatory Bacillus.

View Article and Find Full Text PDF

Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance.

View Article and Find Full Text PDF

Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance.

Plant Cell Rep

December 2024

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.

View Article and Find Full Text PDF

The GRAS transcription factor OsGRAS2 negatively impacts salt tolerance in rice.

Plant Cell Rep

December 2024

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.

Transcription factor OsGRAS2 regulates salt stress tolerance and yield in rice. Plant-specific GRAS transcription factors are involved in many different aspects of plant growth and development, as well as in biotic and abiotic stress responses, although whether and how they participate in salt stress tolerance in rice (Oryza sativa) remains unclear. A screen of a previously generated set of activation-tagged lines revealed that Activation Tagging Line 63 (AC63) displayed a salt stress-sensitive phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!