paper explores how a mutated troponin T causes cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314386 | PMC |
http://dx.doi.org/10.1085/jgp.201812302 | DOI Listing |
Blood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFPresse Med
January 2025
Dana-Farber Cancer Institute, Boston, MA, USA. Electronic address:
Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are premalignant stages in the development of multiple myeloma (MM). Advances in detection, risk stratification, and therapeutic intervention have transformed our understanding of disease progression. Sensitive techniques like mass spectrometry have identified smaller monoclonal gammopathies, such as monoclonal gammopathy of indeterminate potential (MGIP), which may precede MGUS.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA.
Background: Tuberous Sclerosis Complex (TSC) is a rare genetic condition caused by mutation to TSC1 or TSC2 genes, with a population prevalence of 1/7000 births. TSC manifests behaviorally with features of autism, epilepsy, and intellectual disability. Resting state electroencephalography (EEG) offers a window into neural oscillatory activity and may serve as an intermediate biomarker between gene expression and behavioral manifestations.
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea.
SARS-CoV-2 continues to pose a global health challenge due to its high transmissibility and mutability, with new variants emerging that potentially undermine vaccination and therapeutic efforts. Mutations in the spike protein, particularly in the receptor-binding domain (RBD), significantly influence viral transmissibility and immune escape. However, the complex interplay of these mutations and their combined effects on viral fitness remain to be analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!