Background: Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease with various clinical manifestations. MicroRNAs (miRNAs) and immunometabolism are recognized as key elements in SLE pathogenesis; however, the relationship between miRNAs in peripheral blood mononuclear cells (PBMCs) and metabolism in SLE remains unclear.

Methods: We detected PBMC miRNA and mRNA profiles from 3 pooled SLE patients and 3 healthy controls (HCs) using next-generation sequencing, predicted miRNA targets in dysregulated mRNAs, predicted functions and interactions of differentially expressed genes using bioinformatics analysis, validated candidate miRNAs using qRT-PCR, and investigated the association between the expression of candidate miRNAs and SLE clinical characteristics. Moreover, we validated the direct and transcriptional regulatory effect of NovelmiRNA-25 on adenosine monophosphate deaminase 2 (AMPD2) using a dual-luciferase reporter assay and western blot and confirmed AMPD2 mRNA and protein expression in PBMCs using qRT-PCR and western blot, respectively.

Results: Multilayer integrative analysis of microRNA and mRNA regulation showed that 10 miRNAs were down-regulated and 19 miRNAs were up-regulated in SLE patient PBMCs compared with HCs. Bioinformatics analysis of regulatory networks between miRNAs and mRNAs showed that 19 miRNAs were related to metabolic processes. Two candidate miRNAs, NovelmiRNA-25 and miR-1273h-5p, which were significantly increased in the PBMCs of SLE patients (P < 0.05), represented diagnostic biomarkers with sensitivities of 94.74% and 89.47%, respectively (area under the curve = 0.574 and 0.788, respectively). NovelmiRNA-25 expression in PBMCs was associated with disease activity in SLE patients, in both active and stable groups (P < 0.05). NovelmiRNA-25 overexpression downregulated AMPD2 expression in HEK293T cells through direct targeting of the AMPD2 3'UTR (P < 0.01), while inhibition of NovelmiRNA-25 activity led to increased AMPD2 expression (P < 0.01). NovelmiRNA-25 overexpression also downregulated AMPD2 protein expression in HEK293T cells; AMPD2 protein expression in SLE patient PBMCs was decreased. Our results show that differentially expressed miRNAs play an important role in SLE.

Conclusions: Our data demonstrate a novel mechanism in SLE development that involves the targeting of AMPD2 expression by NovelmiRNA-25. miRNAs may serve as novel biomarkers for the diagnosis and evaluation of disease activity of SLE and represent potential therapeutic targets for this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303892PMC
http://dx.doi.org/10.1186/s12967-018-1739-5DOI Listing

Publication Analysis

Top Keywords

candidate mirnas
12
mirnas
9
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
systemic lupus
8
lupus erythematosus
8
sle patients
8
bioinformatics analysis
8
western blot
8

Similar Publications

Predicting candidate biomarkers for COVID-19 associated with leukemia in children.

Am J Clin Exp Immunol

December 2024

Department of Internal Medicine, University of Michigan Ann Arbor, MI 48109, USA.

Since the COVID-19 pandemic, a significant number of pediatric leukemia patients have shown to have also contracted COVID-19 several weeks or months prior to the development of their cancer. Current research indicates the expression of MDA5, encoded by , is associated with increased immunity to COVID-19 in children. Children are also known to have a much lower risk of developing leukemia.

View Article and Find Full Text PDF

Background: A new circulating biomarker superior to carbohydrate antigen 19-9 (CA19-9) is needed for diagnosing pancreatobiliary cancer (PBca). The aim of this study was to identify serum microRNA (miRNA) signatures comprising reproducible and disease-related miRNAs.

Methods: This multicenter study involved patients with treatment-naïve PBca and healthy participants.

View Article and Find Full Text PDF

Current treatments for hepatitis B virus (HBV), such as interferons and nucleic acid analogs, have limitations due to side effects like depression and the development of drug-resistant mutants, highlighting the need for new therapeutic approaches. In this study, we identified microRNA-3145 (miR-3145) as a host-derived miRNA with antiviral activity that is upregulated in primary hepatocytes during HBV infection. The expression of its precursor, pri-miR-3145, increased in response to the the virus infection, and miR-3145 downregulated the hepatitis B virus S (HBS) antigen and hepatitis B virus X (HBX), thereby inhibiting viral replication.

View Article and Find Full Text PDF

Cracking the code: lncRNA-miRNA-mRNA integrated network analysis unveiling lncRNAs as promising non-invasive NAFLD biomarkers toward precision diagnosis.

Comput Biol Chem

January 2025

Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt. Electronic address:

Background: Non-alcoholic fatty liver disease (NAFLD) involves abnormal fat accumulation in the liver, mainly as triglycerides. It ranges from steatosis to non-alcoholic steatohepatitis (NASH), which can lead to inflammation, cellular damage, liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are crucial for regulating gene expression across various conditions.

View Article and Find Full Text PDF

Introduction: Extensive efforts have been made to explore members of the IL-10 family as potential therapeutic strategies for various diseases; however, their biological role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains underexplored.

Methods: Gene expression datasets GSE136825, GSE179265, and GSE196169 were retrieved from the Gene Expression Omnibus (GEO) for analysis. Candidate genes were identified by intersecting differentially expressed genes (DEGs) between the CRSwNP and control groups (DEGsall) with those between the high- and low-score groups within the CRSwNP cohort (DEGsNP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!