The poor prognosis of hepatocellular carcinoma (HCC) is resulted from tumor metastasis. Signaling pathways triggered by deregulated receptor tyrosine kinases (RTKs) were the promising therapeutic targets for prevention of HCC progression. However, RTK-based target therapy using conventional kinase-based inhibitors was often hampered by resistances due to compensatory RTKs signaling. Herein, we report that Ling-Zhi-8 (LZ-8), a medicinal peptide from , was effective in suppressing cell migration of HCC413, by decreasing the amount and activity of various RTKs. These led to the suppression of downstream signaling including phosphorylated JNK, ERK involved in HCC progression. The capability of LZ-8 in targeting multiple RTKs was ascribed to its simultaneous binding to these RTKs. LZ-8 may bind on the -linked glycan motif of RTKs that is required for their maturation and function. Notably, pretreatment of the -glycan trimming enzyme PNGase or inhibitors of the mannosidase (-glycosylation processing enzyme), kifunensine (KIF) and swainsonine (SWN), prevented LZ-8 binding on the aforementioned RTKs and rescued the downstream signaling and cell migration suppressed by LZ-8. Moreover, pretreatment of KIF prevented LZ-8 triggered suppression of tumor growth of HCC413. Our study suggested that a specific type of -glycan is the potential target for LZ-8 to bind on multiple RTKs for suppressing HCC progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356446 | PMC |
http://dx.doi.org/10.3390/cancers11010009 | DOI Listing |
Front Immunol
December 2024
Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
Background: Transarterial therapy (TAT), bevacizumab (Bev), and immune checkpoint inhibitors (ICIs) have individually exhibited efficacy in treating advanced-stage hepatocellular carcinoma (HCC). This study aimed to assess the efficacy and safety of the combination of these three treatments as a neoadjuvant modality in patients with locally advanced HCC.
Methods: The primary endpoint is overall survival (OS).
Mol Carcinog
January 2025
Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China.
The progression of tumors has been demonstrated to have a strong correlation with ferroptosis. Bis(4-hydroxy-3,5-dimethylphenyl) sulfone (TMBPS) has been shown to effectively inhibit the proliferation of hepatocellular carcinoma (HCC), but its underlying mechanism is not clear. In this study, ferrostatin-1 (Fer-1) was employed to explore whether the death of HCC cells caused by TMBPS is related to ferroptosis.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
Hepatocellular carcinoma (HCC) is a common primary malignancy of the liver and has a high mortality. Major facilitator superfamily domain containing 2 (MFSD2A) was previously demonstrated to inhibit tumor progression in several cancers. Here, we elucidated the association between MFSD2A expression and HCC progression and also investigated the underlying mechanism.
View Article and Find Full Text PDFBiol Direct
January 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).
Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses.
Nat Commun
January 2025
State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!