Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to their relatively low cost, large surface area and good chemical and physical properties, carbon nanofibers (CNFs) are attractive for the fabrication of electrodes for supercapacitors (SCs). However, their relatively low electrical conductivity has impeded their practical application. To this end, a novel active-screen plasma activation and deposition technology has been developed to deposit silver, platinum and palladium nanoparticles on activated CNFs surfaces to increase their specific surface area and electrical conductivity, thus improving the specific capacitance. The functionalised CNFs were fully characterised using scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) and their electrochemical properties were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The results showed a significant improvement in specific capacitance, as well as electrochemical impedance over the untreated CNFs. The functionalisation of CNFs via environmental-friendly active-screen plasma technology provides a promising future for cost-effective supercapacitors with high power and energy density.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356825 | PMC |
http://dx.doi.org/10.3390/mi10010002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!