The purpose of this article is to review conventional and advanced neuroimaging techniques performed in the setting of traumatic brain injury (TBI). The primary goal for the treatment of patients with suspected TBI is to prevent secondary injury. In the setting of a moderate to severe TBI, the most appropriate initial neuroimaging examination is a noncontrast head computed tomography (CT), which can reveal life-threatening injuries and direct emergent neurosurgical intervention. We will focus much of the article on advanced neuroimaging techniques including perfusion imaging and diffusion tensor imaging and discuss their potentials and challenges. We believe that advanced neuroimaging techniques may improve the accuracy of diagnosis of TBI and improve management of TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358760PMC
http://dx.doi.org/10.3390/medsci7010002DOI Listing

Publication Analysis

Top Keywords

advanced neuroimaging
12
neuroimaging techniques
12
traumatic brain
8
brain injury
8
neuroimaging
5
tbi
5
neuroimaging traumatic
4
injury purpose
4
purpose article
4
article review
4

Similar Publications

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Short and mid-term research priorities for Veterans with multiple sclerosis: A modified Delphi process engaging Veterans, researchers, and operational partners.

Mult Scler Relat Disord

January 2025

Multiple Sclerosis Center of Excellence West, Veterans Affairs, USA; Rehabilitation Care Service, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, Washington, 98108, USA; Department of Rehabilitation Medicine, University of Washington, 325 9th Avenue, Seattle, Washington, 98104, USA. Electronic address:

Background/objective: Identifying research priorities of Veterans, MS researchers, and key stakeholders is critical to advance high-quality, evidence-based, and Veteran-specific MS care.

Methods: We used a modified Delphi approach to identify research priorities for Veterans with MS. Electronic surveys were distributed to Veterans with MS (n = 50,975), MS researchers (n = 191), VA healthcare providers (1,337), and funding agency representatives (n = 6) asking about their 2-3 most important research questions that would benefit Veterans with MS for researchers to answer in the next 5-10 years.

View Article and Find Full Text PDF

Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.

Pharmaceuticals (Basel)

January 2025

Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.

View Article and Find Full Text PDF

Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies.

Pharmaceuticals (Basel)

January 2025

Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.

Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited.

View Article and Find Full Text PDF

The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!