A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Analysis of Dry and Wet Porometry Methods for Characterization of Regular and Cross-Linked Virus Removal Filter Papers. | LitMetric

Comparative Analysis of Dry and Wet Porometry Methods for Characterization of Regular and Cross-Linked Virus Removal Filter Papers.

Membranes (Basel)

Division for Nanotechnology and Functional Materials, Department for Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden.

Published: December 2018

Pore-size distribution (PSD) is the most critical parameter for size-exclusion virus removal filters. Yet, different dry- and wet-state porometry methods yield different pore-size values. The goal of this work is to conduct comparative analysis of nitrogen gas sorption (NGSP), liquid-liquid and cryoporometry with differential scanning calorimetry (CP-DSC) methods with respect to characterization of regular and cross-linked virus removal filter paper based on cellulose nanofibers, i.e. the mille-feuille filter. The filters were further characterized with atomic force and scanning electron microscopy. Finally, the removal of the worst-case model virus, i.e. minute virus of mice (MVM; 20 nm, nonenveloped parvovirus) was evaluated. The results revealed that there is no difference of the obtained PSDs between the wet methods, i.e. DSC and liquid-liquid porometry (LLP), as well as no difference between the regular and cross-linked filters regardless of method. MVM filtration at different trans membrane pressure (TMP) revealed strong dependence of the virus removal capability on applied pressure. It was further observed that cross-linking filters showed enhanced virus removal, especially at lower TMP. In all, the results of this study highlight the complex nature of virus capture in size-exclusion filters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359513PMC
http://dx.doi.org/10.3390/membranes9010001DOI Listing

Publication Analysis

Top Keywords

virus removal
20
regular cross-linked
12
comparative analysis
8
porometry methods
8
characterization regular
8
virus
8
cross-linked virus
8
removal filter
8
removal
6
filters
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!