Optimization of multiple reaction monitoring mass spectrometry (MRM-MS) parameters of triterpene glycosides (TGs) using traditional infusion methods remains to be labor-intensive. However, it was found that mild gas phase decompositions of protonated and ammoninted precursors (DPAP) of TGs could produce a series of abundant dehydrated product ions of aglycones ([A+H-nHO] (n = 0, 1, 2, 3…)) with high efficiency and stability. Based on these considerations and findings, an innovative ESI-MRM-DPAP-MS strategy was devised on a QTRAP 4000 instrument allowing for rapid the qualitative and quantitative analysis of plant TGs. A detailed study of 85 model compounds from 20 herbal medicines was implemented for validation and evaluation of the ESI-MRM-DPAP-MS strategy proposed. The central composition design confirmed that collision energy (CE) played more significant roles than declustering potentials (DP) for the formation of these Q/Q ion pairs based on MRM-DPAP-MS. It is also noted that Q and M were the most important factors for the prediction of CE values by a partial least square regression model. Here, we demonstrated this generic workflow and its merits in: (1) early prediction and selection of MRM ion pairs, no matter which type of TGs, employing a new-found Q/Q calculation formula (Q=[M+H/NH] and Q= [A+H-nHO] (n = 0, 1, 2, 3…)); (2) direct determination of practicable CE values using TGs-specific CE-estimating linear equations; (3) appearances of excellent sensitivity, stability and repeatability through real application in Aralia elata, Panax notoginseng and Caulophyllum robustum; (4) seamless application of optimal CE parameters in other triple quadrupole MS instruments such as Thermo TSQ Quantum Ultra. The ESI-MRM- DPAP-MS may service as an effective and feasible approach for analytical characterization of biological TGs from herbal medicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2018.12.007 | DOI Listing |
Alzheimers Dement
December 2024
University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
Background: Reversible post-translational modifications, phosphorylation and dephosphorylation, on tau protein play a critical role in the microtubule (MT) modulation. However, abnormal tau phosphorylation, which occurs in tauopathies such as Alzheimer's disease (AD), causes the dissociation of tau from MTs. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments (PHF), and insoluble neurofibrillary tangles (NFTs), a hallmark of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Emory University School of Medicine, Atlanta, GA, USA.
Background: The microtubule-associated Tau gene (MAPT) undergoes alternative splicing to produce isoforms with varying combinations of microtubule-binding region (MTBR) repeats (3R, 4R). The MTBR is the predominant region that forms paired helical filaments and neurofibrillary tangles fibrils in disease. Alzheimer's disease (AD) is a mixed Tauopathy containing both 3R and 4R isoforms.
View Article and Find Full Text PDFNat Commun
January 2025
Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China.
Photodynamic immunotherapy (PIT) has emerged as a promising approach for efficient eradication of primary tumors and inhibition of tumor metastasis. However, most of photosensitizers (PSs) for PIT exhibit notable oxygen dependence. Herein, a concept emphasizing on transition from molecular PSs into semiconductor-like photocatalysts is proposed, which converts the PSs from type II photoreaction to efficient type I photoreaction.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
MAC-MOD Analytical, 103 Commons Ct, Chads Ford, PA 19317, USA.
Sci Rep
December 2024
Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.
The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!