Zinc (Zn) is an element essential to all living organisms and it has an important role as a cofactor of several enzymes. In fish, Zn deficiency has been associated with impaired growth, cataracts, skeletal abnormalities and reduced activity of various Zn metalloenzymes. Fish meal and fish oil traditionally used in salmon feed preparation are being replaced by plant-based ingredients. Zinc additives are supplemented to salmon feed to ensure adequate Zn levels, promoting good health and welfare in Atlantic salmon (Salmo salar). The main objective of the present study was to evaluate Zn species found in an Atlantic salmon feed. This work describes a Zn extraction method that was optimized using a fractional factorial design (FFD), whereby the effect of six factors could be studied by performing only eight experiments. The effects of the type of extraction solution and its molar concentration, pH, presence of sodium dodecyl sulphate, temperature and extraction time on Zn extraction were investigated. Mild extraction conditions were chosen in order to keep the Zn species intact. Total Zn (soluble fractions and non-soluble fractions) was determined by inductively coupled plasma mass spectrometry (ICP-MS). The highest Zn recovery was obtained using 100 mM Tris-HCl, pH 8.5 at a temperature of 4 °C for 24 h where the total Zn in soluble fraction and non-soluble fraction was 9.9 ± 0.2% and 98 ± 6%, respectively. Zinc speciation analysis (on the soluble fractions) was further conducted by size exclusion inductively coupled plasma mass spectroscopy (SEC-ICP-MS). The SEC-ICP-MS method provided qualitative and semi-quantitative information regarding Zn species present in the soluble fractions of the feed. Four Zn-containing peaks were found, each with different molecular weights: Peak 1 (high molecular weight - ≥600 kDa), peak 2 and peak 3 (medium molecular weight - 32 to 17 kDa) were the least abundant (1-6%), while peak 4 (low molecular weight - 17 to 1.36 kDa) was the most abundant (84-95%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2018.11.010DOI Listing

Publication Analysis

Top Keywords

inductively coupled
12
coupled plasma
12
plasma mass
12
salmon feed
12
soluble fractions
12
molecular weight
12
size exclusion
8
mass spectrometry
8
fractional factorial
8
factorial design
8

Similar Publications

Multi-metal mixture exposure and cognitive function in urban older adults: The mediation effects of thyroid hormones.

Ecotoxicol Environ Saf

January 2025

Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, China. Electronic address:

The existing studies on the association between multi-metal mixture exposure and cognitive function in the older adults are limited and controversial, with no studies considering the mediating effect of thyroid hormones on the connection between them. This study of 441 urban older adults assessed 21 urinary metal levels and cognitive function using the Mini-Mental State Examination (MMSE). Urinary metal levels were measured via inductively coupled plasma mass spectrometry (ICP-MS), and thyroid hormones levels were obtained from medical records.

View Article and Find Full Text PDF

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Direct analysis of engineered iron nanotubes and platinum nanorods: A challenge for single particle inductively coupled plasma mass spectrometry.

Talanta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:

The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.

View Article and Find Full Text PDF

When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.

View Article and Find Full Text PDF

In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!