Microalgae in modern cancer therapy: Current knowledge.

Biomed Pharmacother

Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, 44511, Egypt.

Published: March 2019

Cancer is an everyday medical concern which requires an appropriate treatment strategy. The malfunction of cell cycle is a well-established cause for cancer induction. Chemotherapy and radiation are the standard available therapeutic approach for cancer treatment; however severe side effects were reported in association to such treatments, for instance, the efficacy of patients' immune system is adversely affected in apart by radiation. These side effects may be minimized by providing novel remedial preparations. Complementary and alternative medicinal compounds, which were obtained from fresh or marine flora particularly micro and macro algae, were reported to its anti-cancerous activities. Several types of bioactive molecules are also present in microalgae, such as carotenoids, various forms of polysaccharides, vitamins, sterol, fibres, minerals…ect; the great unused biomass of microalgae and their excellent diversity of chemical constituents may introduce a major step in developing of anti-malignant drugs. Previously, such characteristic of microalgal bio-diversity was commercially exploited to make food supplements and gelling substances. However, recently, several investigations were designed to study the potential anti-carcinogenic effect of microalgal extracts, where they mostly concluded their ability to induce apoptotic cancer cell death via caspase dependent or independent pathways. In this review paper, we reported the various species of microalgae that possessed anti-tumor activity, the tumor cell lines altered through using microalgal extracts along with the levels of such extracts that reported to its inhibitor effect against cell cycle and proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.12.069DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
side effects
8
microalgal extracts
8
cancer
5
microalgae
4
microalgae modern
4
modern cancer
4
cancer therapy
4
therapy current
4
current knowledge
4

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!