Toxin and Genome Evolution in a Drosophila Defensive Symbiosis.

Genome Biol Evol

Department of Biology, University of Victoria, British Columbia, Canada.

Published: January 2019

Defenses conferred by microbial symbionts play a vital role in the health and fitness of their animal hosts. An important outstanding question in the study of defensive symbiosis is what determines long term stability and effectiveness against diverse natural enemies. In this study, we combine genome and transcriptome sequencing, symbiont transfection and parasite protection experiments, and toxin activity assays to examine the evolution of the defensive symbiosis between Drosophila flies and their vertically transmitted Spiroplasma bacterial symbionts, focusing in particular on ribosome-inactivating proteins (RIPs), symbiont-encoded toxins that have been implicated in protection against both parasitic wasps and nematodes. Although many strains of Spiroplasma, including the male-killing symbiont (sMel) of Drosophila melanogaster, protect against parasitic wasps, only the strain (sNeo) that infects the mycophagous fly Drosophila neotestacea appears to protect against parasitic nematodes. We find that RIP repertoire is a major differentiating factor between strains that do and do not offer nematode protection, and that sMel RIPs do not show activity against nematode ribosomes in vivo. We also discovered a strain of Spiroplasma infecting a mycophagous phorid fly, Megaselia nigra. Although both the host and its Spiroplasma are distantly related to D. neotestacea and its symbiont, genome sequencing revealed that the M. nigra symbiont encodes abundant and diverse RIPs, including plasmid-encoded toxins that are closely related to the RIPs in sNeo. Our results suggest that distantly related Spiroplasma RIP toxins may perform specialized functions with regard to parasite specificity and suggest an important role for horizontal gene transfer in the emergence of novel defensive phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349354PMC
http://dx.doi.org/10.1093/gbe/evy272DOI Listing

Publication Analysis

Top Keywords

defensive symbiosis
12
parasitic wasps
8
protect parasitic
8
spiroplasma
5
toxin genome
4
genome evolution
4
drosophila
4
evolution drosophila
4
defensive
4
drosophila defensive
4

Similar Publications

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Herbivorous insects need to cope with changing host plant biochemistry caused by abiotic and biotic impacts, to meet their dietary requirements. Larvae of the multivoltine European grapevine moth Lobesia botrana, one of the main insect pests in viticulture, feed on both flowers and berries. The nutritional value and defence compounds of these organs are changing with plant phenology and are affected by climate change which may accordingly alter plant-insect interactions.

View Article and Find Full Text PDF

Glycine betaine enhances heavy metal phytoremediation via rhizosphere modulation and nitrogen metabolism in king grass-Serratia marcescens strain S27 symbiosis.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.

View Article and Find Full Text PDF

Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction.

Antioxidants (Basel)

December 2024

Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, 1870 Frederiksberg, Denmark.

The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity.

View Article and Find Full Text PDF

Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!