Adenosine signaling is involved in glucose metabolism in hepatocytes and myocytes in vitro. However, no information is available regarding the effect of adenosine on glucose metabolism in vivo. Thus, we examined how extracellular adenosine acts on glucose metabolism using mice. Subcutaneous injections of adenosine (10, 25, and 50 mg/kg bodyweight) dose-dependently increased blood glucose levels, with the peak occurring at 30 min post injection. At 30 min after adenosine injection (25 mg/kg bodyweight), glycogen content in the liver, but not the skeletal muscle, was significantly decreased. Hepatic glycogen depletion by fasting for 12 h suppressed the increase of blood glucose levels at 30 min after adenosine injection. These results suggest that adenosine increases blood glucose levels by stimulating hepatic glycogenolysis. To investigate the effect of adenosine on the adrenal gland, we studied the glycogenolysis signal in adrenalectomized (ADX) mice. Adenosine significantly increased the blood glucose levels in sham mice but not in the ADX mice. The decrease in hepatic glycogen content induced by adenosine in the sham mice was partially suppressed in the ADX mice. The level of plasma corticosterone, the main glucocorticoid in mice, was significantly increased in the sham mice by adenosine but its levels were low in ADX mice injected with either PBS or adenosine. These results suggest that adenosine promotes secretion of corticosterone from the adrenal glands, which causes hepatic glycogenolysis and subsequently the elevation of blood glucose levels. Our findings are useful for clarifying the physiological functions of adenosine in glucose metabolism in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303095 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209647 | PLOS |
Histochem Cell Biol
January 2025
Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.
View Article and Find Full Text PDFBiol Res Nurs
January 2025
Department of Laboratory Medicine, Nanjing Pukou People's Hospital, Nanjing, China.
Background: The gap between 2-hour post-load plasma glucose (2 h PG) and fasting blood glucose (FBG) has been shown to be informative of the risk of developing prediabetes and diabetes. We aimed to examine the significance of the gap between 2 h PG and FBG in relation to all-cause or cardiovascular disease (CVD) mortality in normoglycemic adults.
Methods: 3611 normoglycemic participants from the 2005-2016 US National Health and Nutrition Examination Survey were included and dichotomized into the low (2 h PG ≤ FBG) and high post-load (2 h PG > FBG) groups.
J Med Virol
February 2025
Xiangya School of Public Health, Central South University, Changsha, China.
Patients with diabetes are at increased risk of HBV infection; however, the effects of HBV infection and anti-HBV therapy on the management of type 1 diabetes (T1D), type 2 diabetes (T2D), and latent autoimmune diabetes in adults (LADA) remain unclear. From 2016 to 2023, we recruited a multicenter cohort of 355 HBV-infected inpatients, including 136 with T1D, 140 with T2D, and 79 with LADA. The control group included 525 HBV-uninfected inpatients, comparing 171 with T1D, 204 with T2D and 150 with LADA.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Center for Non-Communicable Disease Management Beijing Children's Hospital, Capital Medical University, National Center for Children's Health Beijing China.
Background: The differential impact of serum lipids and their targets for lipid modification on cardiometabolic disease risk is debated. This study used Mendelian randomization to investigate the causal relationships and underlying mechanisms.
Methods: Genetic variants related to lipid profiles and targets for lipid modification were sourced from the Global Lipids Genetics Consortium.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a well-known red blood cell enzymopathy and a cause of intravascular hemolysis. This case report presents a child with underlying G6PD deficiency who experienced an acute episode of extensive intravascular hemolysis induced by a scrub typhus infection. The key takeaway from this report is that scrub typhus infection can trigger extensive hemolysis in patients with even "mild" G6PD deficiency, and normal G6PD levels found during the acute phase of hemolysis do not rule out the possibility of underlying G6PD deficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!