Depletion of macrophages is thought to be a therapeutic option for obesity-induced inflammation and metabolic dysfunction. However, whether the therapeutic effect is a direct result of reduced macrophage-derived inflammation or secondary to decreases in fat mass is controversial, as macrophage depletion has been shown to disrupt energy homeostasis. This study was designed to determine if macrophage depletion via clodronate-liposome (CLD) treatment could serve as an effective intervention to reduce obesity-driven inflammatory and metabolic impairments independent of changes in energy intake. After 16 wk on a high-fat diet (HFD) or the AIN-76A control (low-fat) diet (LFD) ( n = 30/diet treatment), male C57BL/6J mice were assigned to a CLD- or PBS-liposome treatment ( n = 15/group) for 4 wk. Liposomes were administered biweekly via intraperitoneal injections (8 administrations in total). PBS-liposome-treated groups were pair-fed to their CLD-treated dietary counterparts. Metabolic function was assessed before and after liposome treatment. Adipose tissue, as well as the liver, was investigated for macrophage infiltration and the presence of inflammatory mediators. Additionally, a complete blood count was performed. CLD treatment reduced energy intake. When controlling for energy intake, CLD treatment was unable to regress metabolic dysfunction or nonalcoholic fatty liver disease and impaired adipose tissue insulin action. Moreover, repeated CLD treatment induced neutrophilia and anemia, increased adipose tissue mRNA expression of the proinflammatory cytokines IL-6 and IL-1β, and augmented circulating IL-6 and monocyte chemoattractant protein-1 concentrations ( P < 0.05). This study suggests that repeated intraperitoneal administration of CLD to deplete macrophages attenuates obesity by limiting energy intake. Moreover, after controlling for the benefits of weight loss, the accompanying detrimental side effects limit regular CLD treatment as an effective therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415716 | PMC |
http://dx.doi.org/10.1152/ajpendo.00438.2018 | DOI Listing |
Gut Liver
January 2025
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Imaging plays a critical role in the management of chronic liver disease (CLD) because it is a safe and painless method to assess liver health. The widely used imaging techniques include ultrasound, computed tomography and magnetic resonance imaging. These techniques allow the measurement of fat deposition, iron content, and fibrosis, replacing invasive liver biopsies in many cases.
View Article and Find Full Text PDFExpert Rev Gastroenterol Hepatol
January 2025
Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada.
Introduction: Accurate and reliable diagnosis and monitoring of hepatic fibrosis is increasingly important given the variable natural history in chronic liver disease (CLD) and expanding antifibrotic therapeutic options targeting reversibility of early-stage cirrhosis. This highlights the need to develop more refined and effective noninvasive techniques for the dynamic assessment of fibrogenesis and fibrolysis.
Areas Covered: We conducted a literature review on PubMed, from 1 December 1970, to 1 November 2024, to evaluate and compare available blood-based and imaging-based noninvasive tools for hepatic fibrosis diagnosis and monitoring.
JHEP Rep
January 2025
Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium.
J Control Release
January 2025
Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address:
The immunosuppressive tumor microenvironment (TME) plays a crucial role in the progression and treatment resistance of melanoma. Modulating the TME is thus a key strategy for enhancing therapeutic outcomes. Previousstudies have identified clonidine (CLD), an α2-adrenergic receptor agonist, as a promising agent that enhances T lymphocyte infiltration and reduces myeloid-derived suppressor cells within the TME, thereby promoting antitumor immune responses.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Max Smart Super Speciality Hospital, New Delhi, IND.
Background Numerous risk factors have been identified for developing severe COVID-19, including sociodemographic variables and concomitant diseases. Individuals with underlying comorbidities such as diabetes, hypertension, asthma, and coronary artery disease are at a greater risk of severe illness and death. This study aimed to observe the association between risk factors and the severity of COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!