A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diffusing up the Hill: Dynamics and Equipartition in Highly Unstable Systems. | LitMetric

Stochastic motion of particles in a highly unstable potential generates a number of diverging trajectories leading to undefined statistical moments of the particle position. This makes experiments challenging and breaks down a standard statistical analysis of unstable mechanical processes and their applications. A newly proposed approach takes advantage of the local characteristics of the most probable particle motion instead of the divergent averages. We experimentally verify its theoretical predictions for a Brownian particle moving near an inflection in a highly unstable cubic optical potential. The most likely position of the particle atypically shifts against the force, despite the trajectories diverging in the opposite direction. The local uncertainty around the most likely position saturates even for strong diffusion and enables well-resolved position detection. Remarkably, the measured particle distribution quickly converges to a quasistationary one with the same atypical shift for different initial particle positions. The demonstrated experimental confirmation of the theoretical predictions approves the utility of local characteristics for highly unstable systems which can be exploited in thermodynamic processes to uncover energetics of unstable systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.230601DOI Listing

Publication Analysis

Top Keywords

highly unstable
16
unstable systems
12
local characteristics
8
theoretical predictions
8
unstable
6
particle
6
diffusing hill
4
hill dynamics
4
dynamics equipartition
4
highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!