Method for the Direct Enantioselective Synthesis of Chiral Primary α-Amino Ketones by Catalytic α-Amination.

Org Lett

Department of Chemistry and Chemical Biology , Harvard University, Cambridge , Massachusetts 02138 , United States.

Published: January 2019

A useful catalytic enantioselective approach has been developed for the synthesis of chiral ketamine analogs using Rh(II)-catalyzed amination of triisopropylsilyl enol ethers to form α-amino ketones with O-(4-nitrophenyl)hydroxylamine as nitrogen donor in 81-91% ee.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.8b03733DOI Listing

Publication Analysis

Top Keywords

synthesis chiral
8
α-amino ketones
8
method direct
4
direct enantioselective
4
enantioselective synthesis
4
chiral primary
4
primary α-amino
4
ketones catalytic
4
catalytic α-amination
4
α-amination catalytic
4

Similar Publications

Ultrasensitive platform for the determination of biothiols using aggregation-induced emission of gold-cysteine nanosheets.

Biosens Bioelectron

January 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.

View Article and Find Full Text PDF

Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.

View Article and Find Full Text PDF

We report the synthesis of three radical-cation salts of BEDT-TTF from racemic tris(oxalato)ferrate by electrocrystallization in the presence of chiral molecules. In the presence of enantiopure l-(+)-tartaric acid, we observe spontaneous resolution of the labile tris(oxalato)ferrate anion to produce the chiral radical-cation salt α-(BEDT-TTF)[Δ-Fe(CO)].[l-(+)-tartaric acid] which contains only the Δ enantiomer of Fe(CO).

View Article and Find Full Text PDF

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!