The unprecedented one-dimensional (1-D) coordination polymer of crown fused zinc phthalocyanine (P-CfZnPc) with an octahedral crystal structure and with intermolecular packing that has superior multichannel sensor ability for Be ion recognition was prepared and characterized by single-crystal X-ray diffraction analysis (XRD) and a wide range of spectroscopic and voltammetric methods. An exceptional feature of the crystal structure of P-CfZnPc is that each zinc ion in the phthalocyanine (Pc) polymer is coordinated by the four isoindole nitrogen atoms and an outer oxygen atom of the Pc molecule. This structure is the first example of an octahedral arrangement in a 1-D polymeric chain for zinc phthalocyanines (ZnPcs) and zinc porphyrins (ZnPs) reached without the presence of a coordinating solvent, which was confirmed by XRD analysis. Interestingly, this (1-D) coordination polymer preserves its conformation in THF (tetrahydrofuran) solution, thereby effectively preventing aggregation. This result was confirmed by the particle size of the molecule (125 nm) using dynamic light scattering (DLS) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectra as well as UV-vis spectroscopy. The sensor has long-term stability (more than 3 months in solution), a very low response time (less than 1 s), and nonaggregating ability, facilitating the accurate determination of ultra-trace amounts of Be (lower than 1 ppb), which is extremely important in terms of human health and environmental protection. The sensor can highly selectively and sensitively bind Be among Li, Na, K, Cs, Mg, Ca, Ba, Al, Co, Hg, Ni, Pb, and Zn ions via Be-induced J aggregation of Pc molecules. Such a binding leads to not only a significant decrease in Pc absorption (677 nm) as well as the creation of new absorption (720 nm) but also fluorescence emission quenching (690 nm). Furthermore, the sensor displayed highly selective voltammetric recognition for Be following J aggregation/disaggregation in the second reduction process. The binding mechanism of the sensor and Be ion was also explained on the basis of TD-DFT calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b03038 | DOI Listing |
Sci Rep
December 2024
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.
The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Computing Power Network and Information Security, Shandong Computer Science Center (National Supercomputing Center in Jinan), Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, Shandong, P. R. China.
Crystal structure similarity is useful for the chemical analysis of nowadays big materials databases and data mining new materials. Here we propose to use two-dimensional Wasserstein distance (earth mover's distance) to measure the compositional similarity between different compounds, based on the periodic table representation of compositions. To demonstrate the effectiveness of our approach, 1586 Cu-S based compounds are taken from the inorganic crystal structure database (ICSD) to form a validation dataset.
View Article and Find Full Text PDFNat Commun
December 2024
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
Crystal symmetry, which governs the local atomic coordination and bonding environment, is one of the paramount constituents that intrinsically dictate materials' functionalities. However, engineering crystal symmetry is not straightforward due to the isotropically strong covalent/ionic bonds in crystals. Layered two-dimensional materials offer an ideal platform for crystal engineering because of the ease of interlayer symmetry operations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!