The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia.

Leukemia

Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: June 2019

AI Article Synopsis

  • Acute promyelocytic leukemia (APL) is primarily driven by the PML-RARA fusion gene resulting from a specific chromosomal translocation (t(15;17)), but some cases don't show this fusion using conventional tests.
  • Next-generation sequencing of 111 pediatric APL patients revealed additional genetic rearrangements and fusion genes, suggesting alternative pathways to APL development and highlighting the complexity of the disease beyond the PML-RARA fusion.
  • The presence of RARA rearrangements is associated with better survival outcomes in APL patients, while mutations in genes like WT1 and NPM1 are linked to both primary and relapsed stages of the disease, indicating their role in disease progression.

Article Abstract

Acute promyelocytic leukemia (APL) is characterized by t(15;17)(q22;q21), resulting in a PML-RARA fusion that is the master driver of APL. A few cases that cannot be identified with PML-RARA by using conventional methods (karyotype analysis, FISH, and RT-PCR) involve abnormal promyelocytes that are fully in accordance with APL in morphology, cytochemistry, and immunophenotype. To explore the mechanisms involved in pathogenesis and recurrence of morphologically diagnosed APL, we performed comprehensive variant analysis by next-generation sequencing in 111 pediatric patients morphologically diagnosed as APL. Structural variant (SV) analysis in 120 DNA samples from both diagnosis and relapse stage identified 95 samples with RARA rearrangement (including 94 with PML-RARA and one with NPM-RARA) and two samples with KMT2A rearrangement. In the eligible 13 RNA samples without any RARA rearrangement at diagnosis, one case each with CPSF6-RARG, NPM1-CCDC28A, and TBC1D15-RAB21 and two cases with a TBL1XR1-RARB fusion were discovered. These uncovered fusion genes strongly suggested their contributions to leukemogenesis as driver alternations and APL phenotype may arise by abnormalities of other members of the nuclear receptor superfamily involved in retinoid signaling (RARB or RARG) or even by mechanisms distinct from the formation of aberrant retinoid receptors. Single-nucleotide variant (SNV) analysis in 77 children (80 samples) with RARA rearrangement showed recurrent alternations of primary APL in FLT3, WT1, USP9X, NRAS, and ARID1A, with a strong potential for involvement in pathogenesis, and WT1 as the only recurrently mutated gene in relapsed APL. WT1, NPM1, NRAS, FLT3, and NSD1 were identified as recurrently mutated in 17 primary samples without RARA rearrangement and WT1, NPM1, TP53, and RARA as recurrently mutated in 9 relapsed samples. The survival of APL with RARA rearrangement is much better than without RARA rearrangement. Thus, patients morphologically diagnosed as APL that cannot be identified as having a RARA rearrangement are more reasonably classified as a subclass of AML other than APL, and individualized treatment should be considered according to the genetic abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-018-0338-zDOI Listing

Publication Analysis

Top Keywords

rara rearrangement
28
morphologically diagnosed
16
samples rara
16
diagnosed apl
12
recurrently mutated
12
apl
11
acute promyelocytic
8
promyelocytic leukemia
8
variant analysis
8
patients morphologically
8

Similar Publications

Background: Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) . Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is a rare type of AML, characterized by the t(15;17) translocation and accounting for 8-15% of cases. The introduction of target therapies, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), radically changed the management of APL, making it the most curable AML subtype. However, a small percentage (estimated to be 2%) of AML presenting with APL-like morphology and/or immunophenotype lacks t(15;17).

View Article and Find Full Text PDF

Next-generation sequencing RNA fusion panel for the diagnosis of haematological malignancies.

Pathology

November 2024

Department of Haematology, Monash Health, Clayton, Vic, Australia; Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia. Electronic address:

Haematological malignancies are being increasingly defined by gene rearrangements, which have traditionally been detected by karyotype, fluorescent in situ hybridisation (FISH) or reverse-transcriptase polymerase chain reaction (RT-PCR). However, these traditional methods may miss cryptic gene rearrangements and are limited by the number of gene rearrangements screened at any one time. A next-generation sequencing (NGS) RNA fusion panel is an evolving technology that can identify multiple fusion transcripts in a single molecular assay, even without prior knowledge of breakpoints or fusion partners.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML), characterized by the hallmark translocation t(15;17) resulting in a :: fusion. Once diagnosed, APL is now considered to be one of the most treatable forms of AML. However, without early detection and treatment, the disease is associated with rapid deterioration and lethal side effects.

View Article and Find Full Text PDF

Fusion genes generally serve as driver mutations in leukemia. The rearrangement of the RARA gene located on chromosome 17q21 is a molecular pathological feature of acute promyelocytic leukemia (APL). A series of RARA-involved fusion genes have been identified in variant APL, including one carrying the t(11;17)(q13;q21) translocation, resulting in the NUMA1::RARA fusion gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!