Transcranial magnetic stimulation (TMS) over human primary somatosensory cortex (S1) does not produce immediate outputs. Researchers must therefore rely on indirect methods for TMS coil positioning. The "gold standard" is to use individual functional and structural magnetic resonance imaging (MRI) data, but the majority of studies don't do this. The most common method to locate the hand area of S1 (S1-hand) is to move the coil posteriorly from the hand area of primary motor cortex (M1-hand). Yet, S1-hand is not directly posterior to M1-hand. We localized the index finger area of S1-hand (S1-index) experimentally in four ways. First, we reanalyzed functional MRI data from 20 participants who received vibrotactile stimulation to their 10 digits. Second, to assist the localization of S1-hand without MRI data, we constructed a probabilistic atlas of the central sulcus from 100 healthy adult MRIs and measured the likely scalp location of S1-index. Third, we conducted two experiments mapping the effects of TMS across the scalp on tactile discrimination performance. Fourth, we examined all available neuronavigation data from our laboratory on the scalp location of S1-index. Contrary to the prevailing method, and consistent with systematic review evidence, S1-index is close to the C3/C4 electroencephalography (EEG) electrode locations on the scalp, ~7-8 cm lateral to the vertex, and ~2 cm lateral and 0.5 cm posterior to the M1-hand scalp location. These results suggest that an immediate revision to the most commonly used heuristic to locate S1-hand is required. The results of many TMS studies of S1-hand need reassessment. NEW & NOTEWORTHY Noninvasive human brain stimulation requires indirect methods to target particular brain areas. Magnetic stimulation studies of human primary somatosensory cortex have used scalp-based heuristics to find the target, typically locating it 2 cm posterior to the motor cortex. We measured the scalp location of the hand area of primary somatosensory cortex and found that it is ~2 cm lateral to motor cortex. Our results suggest an immediate revision of the prevailing method is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383658 | PMC |
http://dx.doi.org/10.1152/jn.00641.2018 | DOI Listing |
J Neurophysiol
January 2025
Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.
View Article and Find Full Text PDFUnlabelled: Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons.
View Article and Find Full Text PDFThe idea of self-organized signal processing in the cerebral cortex has become a focus of research since Beggs and Plentz reported avalanches in local field potential recordings from organotypic cultures and acute slices of rat somatosensory cortex. How the cortex intrinsically organizes signals remains unknown. A current hypothesis was proposed by the condensed matter physicists Bak, Tang, and Wiesenfeld when they conjectured that if neuronal avalanche activity followed inverse power law distributions, then brain activity may be set around phase transitions within self-organized signals.
View Article and Find Full Text PDFBackground: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.
View Article and Find Full Text PDFCereb Cortex
January 2025
Optical Imaging and Brain Sciences Medical Discovery Team, Department of Neuroscience, University of Minnesota, 2021 6th St. SE, Minneapolis, MN 55455, United States.
Processing sensory information, generating perceptions, and shaping behavior engages neural networks in brain areas with highly varied representations, ranging from unimodal sensory cortices to higher-order association areas. In early development, these areas share a common distributed and modular functional organization, but it is not known whether this undergoes a common developmental trajectory, or whether such organization persists only in some brain areas. Here, we examine the development of network organization across diverse cortical regions in ferrets using in vivo wide field calcium imaging of spontaneous activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!