Spontaneously hierarchical self-assembly of nanofibres into fluorescent spherical particles: a leap from organogels to macroscopic solid spheres.

Soft Matter

Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.

Published: January 2019

The spontaneous hierarchical self-assembly of organic small molecules into macroscopic architectures with excellent photophysical properties and highly-ordered structures has rarely been reported to date. In this work, we find that the organogel of SY1 formed in ethyl acetate could spontaneously assemble into macroscopic spherical particles with a unique morphology and photophysical properties. Upon increasing the aging time, the gel gradually collapsed and then transformed into many macroscopic spheres (SY1-balls) with an average diameter of ca. 500 μm and strong yellow emission. In view of the emission properties and the porous structure of the SY1-balls, they were successfully applied in the adsorption and detection of heavy metal ions. More interestingly, SY1 shows different assembly behaviours in toluene solution when mixed with a triphenylamine derivative (TPA1). Macroscopic particles (ST-balls) with a core-shell structure were obtained, which were quite different from the SY1-balls in morphology and emission colour. So far as we know, many studies have focused on the change of the micromorphology of a gel, while the spontaneous self-assembly of organogels into macroscopic particles has been reported in this work for the first time. This work enriches the present study on organogels and plays an important role in further understanding the hierarchical self-assembly of organogels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm02106fDOI Listing

Publication Analysis

Top Keywords

hierarchical self-assembly
12
spherical particles
8
organogels macroscopic
8
photophysical properties
8
reported work
8
structure sy1-balls
8
macroscopic particles
8
self-assembly organogels
8
macroscopic
6
spontaneously hierarchical
4

Similar Publications

Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

Genetically Encoded Nucleic Acid Nanostructures for Biological Applications.

Chembiochem

January 2025

National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, No.11 BeiYiTiao, ZhongGuanCun, 100190, Beijing, CHINA.

Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures.

View Article and Find Full Text PDF

Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors.

View Article and Find Full Text PDF

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!