A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalized Anion-Exchange Membranes Facilitate Electrodialysis of Citrate and Phosphate from Model Dairy Wastewater. | LitMetric

In this study, the preparation of a new, functional anion-exchange membrane (AEM), containing guanidinium groups as the anion-exchanging sites (Gu-100), is described as well as the membrane characterization by XPS, water uptake, permselectivities, and electrical resistances. The functional membrane was also employed in pH-dependent electrodialysis experiments using model dairy wastewater streams. The properties of the new membrane are compared to those of a commercially available anion-exchange membrane bearing conventional quaternary ammonium groups (Gu-0). Guanidinium was chosen for its specific binding properties toward oxyanions: e.g., phosphate. This functional moiety was covalently coupled to an acrylate monomer via a facile two-step synthesis to yield bulk-modified membranes upon polymerization. Significant differences were observed in the electrodialysis experiments for Gu-0 and Gu-100 at pH 7, showing an enhanced phosphate and citrate transport for Gu-100 in comparison to Gu-0. At pH 10 the difference is much more pronounced: for Gu-0 membranes almost no phosphate and citrate transport could be detected, while the Gu-100 membranes transported both ions significantly. We conclude that having guanidinium groups as anion-exchange sites improves the selectivity of AEMs. As the presented monomer synthesis strategy is modular, we consider the implementation of functional groups into a polymer-based membrane via the synthesis of tailor-made monomers as an important step toward selective ion transport, which is relevant for various fields, including water treatment processes and fuel cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407041PMC
http://dx.doi.org/10.1021/acs.est.8b05558DOI Listing

Publication Analysis

Top Keywords

model dairy
8
dairy wastewater
8
anion-exchange membrane
8
guanidinium groups
8
electrodialysis experiments
8
phosphate citrate
8
citrate transport
8
membrane
6
functionalized anion-exchange
4
membranes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!