Harnessing low energy photons is of paramount importance for multi-junction high efficiency solar cells as well as for thermo-photovoltaic applications. However, semiconductor absorbers with the bandgap lower than 0.8 eV have been limited to III-V (InGaAs) or IV (Ge) semiconductors that are characterized by high manufacturing costs and complicated lattice matching requirements in their growth and integration with higher bandgap cells. Here, we have developed solution processed low bandgap photovoltaic devices based on PbS colloidal quantum dots (CQDs) with a bandgap of 0.7 eV suited for both thermo-photovoltaics and low energy solar photon harvesting. By matching the spectral response of those cells to that of the infrared solar spectrum, we report a record high short circuit current (JSC) of 37 mA cm-2 under the full solar spectrum and 5.5 mA cm-2 when placed at the back of a silicon wafer resulting in power conversion efficiencies (PCEs) of 6.4% and 0.7%, respectively. Moreover, the device reached an above bandgap PCE of ∼6% as a thermo-photovoltaic cell recorded under a 1000 °C blackbody radiator.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr08755eDOI Listing

Publication Analysis

Top Keywords

solution processed
8
pbs colloidal
8
colloidal quantum
8
quantum dots
8
low energy
8
solar spectrum
8
bandgap
6
processed infrared-
4
infrared- thermo-photovoltaics
4
thermo-photovoltaics based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!