AI Article Synopsis

  • The B7-H1/PD-1 immune pathway is bi-directional, meaning it can inhibit or promote immune responses depending on the context.
  • Previous research found that B7-H1 can act as an anti-apoptotic receptor, helping cells survive when engaged by PD-1.
  • In mouse models of graft-versus-host disease (GVHD), manipulating this pathway either accelerated disease progression with wild-type T-cells or improved symptoms and tolerance with PD-1 deficient T-cells, highlighting its complex role in immune responses.

Article Abstract

The B7-H1/PD-1 immune co-inhibitory pathway is functionally bi-directional. We showed previously that B7-H1 could be widely induced on various types of cells and, in addition to be a ligand for PD-1 on T-cells, also serve as an anti-apoptotic receptor upon interacting with PD-1. We explored the role of B7-H1 as a receptor in protecting allogeneic T-cell mediated host cell destruction and systemic inflammation using mouse models of graft-versus-host disease (GVHD). Administer of by PD-1Ig or a B7-H1 monoclonal antibody (mAb) led to accelerated progression and rapid death in mice transferred with wild type allogeneic T-cells, supporting a dominant role of this pathway in the suppression of allogeneic T-cell response. In sharp contrast, PD-1Ig or B7-H1 mAb could behave as the B7-H1 agonists and drastically ameliorate the progression of GVHD and induced long-term tolerance in the context of transferring PD-1 deficient allogeneic T-cells. We further demonstrated that B7-H1 agonists decreased susceptibility of normal hematopoietic cells to allogenic T-cell lysis in vitro and in vivo. More importantly, mice that developed tolerance could still mount graft-versus-leukemia response. Our findings indicate a role for intrinsic B7-H1 in protecting host cells during systemic inflammation and have implications for treating human diseases including GVHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298416PMC
http://dx.doi.org/10.1080/2162402X.2018.1504156DOI Listing

Publication Analysis

Top Keywords

b7-h1 agonists
12
b7-h1
8
allogeneic t-cell
8
systemic inflammation
8
pd-1ig b7-h1
8
allogeneic t-cells
8
agonists prevent
4
prevent disseminated
4
disseminated inflammation
4
inflammation desensitizing
4

Similar Publications

Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung.

Nat Commun

January 2025

Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.

Suppression of chimeric antigen receptor-modified T (CAR-T) cells by the immunosuppressive tumor microenvironment remains a major barrier to their efficacy against solid tumors. To address this, we develop an anti-PD-L1-expressing nanovesicle loaded with the STING agonist cGAMP (aPD-L1 NVs@cGAMP) to remodel the tumor microenvironment and thereby enhance CAR-T cell activity. Following pulmonary delivery, the nanovesicles rapidly accumulate in the lung and selectively deliver STING agonists to PD-L1-overexpressing cells via the PD-1/PD-L1 interaction.

View Article and Find Full Text PDF

Th1 adjuvant ARNAX, in combination with radiation therapy, enhances tumor regression in mouse tumor-implant models.

Immunol Lett

February 2025

Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan. Electronic address:

Radiation therapy (RT) rarely induces tumor regression at untreated metastatic sites, the so-called abscopal effect. A syngeneic tumor (EG7) transplanted into a Th1-dominant mouse strain (C57BL/6) regressed significantly on the treated side and less on the contralateral side after RT. Additional subcutaneous administration of ARNAX, a non-inflammatory adjuvant, further accelerated tumor regression on the untreated side.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is considered highly effective treatment for advanced non-small cell lung cancer (NSCLC), who often develop drug resistance after 10 months of treatment. Herein, the aim was to unravel the mechanism behind the resistance to icotinib in NSCLC.

Methods: Establishment of icotinib-resistant PC-9 cells (PC-9R) was achieved through repeated exposure to increasing concentrations of icotinib for more than 12 months.

View Article and Find Full Text PDF

Cellular innate immune response is closely related to cGAS-STING pathway and PD-1/PD-L1 immune checkpoint blockade. The lack of tissue penetration of STING agonists and nanomedicines in conventional approaches reduces their immunotherapeutic efficacy. At the same time, because the cGAS-STING signaling pathway is silent in many breast cancer cells, it cannot play its role.

View Article and Find Full Text PDF

On-demand reprogramming of immunosuppressive microenvironment in tumor tissue via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immunotherapy using engineered gold nanoparticles for malignant tumor treatment.

Biomaterials

April 2025

Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

The frequent immune escape of tumor cells and fluctuating therapeutic efficiency vary with each individual are two critical issues for immunotherapy against malignant tumor. Herein, we fabricated an intelligent core-shell nanoparticle (SNAs@CCM) to significantly inhibit the PD-1/PD-L1 mediated immune escape by on-demand regulation of various oncogenic microRNAs and perform RNAs dependent photothermal-immunotherapy to achieve precise and efficient treatment meeting the individual requirements of specific patients by in situ generation of customized tumor-associated antigens. The SNAs@CCM consisted of antisense oligonucleotides grafted gold nanoparticles (SNAs) as core and TLR7 agonist imiquimod (R837) functionalized cancer cell membrane (CCM) as shell, in which the acid-labile Schiff base bond was used to connect the R837 and CCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!