Background: Long noncoding RNAs (lncRNAs) have been identified as prognostic biomarkers and functional regulators in human cancers. The present study aimed to determine the expressions and functions of an lncRNA, (), in hepatocellular carcinoma (HCC).

Patients And Methods: expressions were tested by quantitative real-time PCR (qRT-PCR) in HCC cell lines, as well as 43 pairs of HCC tissues and pair-matched healthy hepatic tissues. It was overexpressed in Hep3B and HuH7 cells. The effects of overexpression in HCC in vitro proliferation, 5-fluorouracil (5-FU) chemoresistance, and in vivo tumor growth were tested. A potential microRNA (miRNA) sponge target of , hsa-miR-93, was tested by luciferase reporter assay and qRT-PCR. In addition, hsa-miR-93 was upregulated in -overexpressed HCC cells to examine its effect on -mediated cancer cell functional regulation in HCC.

Results: levels were markedly downregulated in both HCC cell lines and HCC tissues. Lentivirus-mediated overexpression inhibited HCC cell proliferation, 5-FU chemoresistance, and in vivo tumor growth. Hsa-miR-93 was confirmed to be directly sponging on . Its upregulation in HCC cells reversed overexpression and induced tumor-suppressing effects in HCC cells.

Conclusion: Our data demonstrate that plays a critical role in HCC development via functionally sponging hsa-miR-93.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290873PMC
http://dx.doi.org/10.2147/OTT.S182005DOI Listing

Publication Analysis

Top Keywords

hcc cell
12
hcc
11
inhibited hcc
8
functionally sponging
8
sponging hsa-mir-93
8
cell lines
8
hcc tissues
8
5-fu chemoresistance
8
chemoresistance vivo
8
vivo tumor
8

Similar Publications

A Cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion.

Virus Res

January 2025

Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:

Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.

View Article and Find Full Text PDF

IKZF1 promotes pyroptosis and prevents M2 macrophage polarization by inhibiting JAK2/STAT5 pathway in colon cancer.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China. Electronic address:

Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database.

View Article and Find Full Text PDF

OXCT1 succinylation and activation by SUCLA2 promotes ketolysis and liver tumor growth.

Mol Cell

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China. Electronic address:

Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is associated with poor survival. Formosanin C (FC) is a diosgenin glycoside extracted from Paris polyphylla. Therapeutic effects of FC against HCC malignancies remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!