The role of protein structural disorder in biological functions has gained increasing attention in the past decade. The bacterial acid-resistant chaperone HdeA belongs to a group of "conditionally disordered" proteins, because it is inactive in its well-structured state and becomes activated via an order-to-disorder transition under acid stress. However, the mechanism for unfolding-induced activation remains unclear because of a lack of experimental information on the unfolded state conformation and the chaperone-client interactions. Herein, we used advanced solution NMR methods to characterize the activated-state conformation of HdeA under acidic conditions and identify its client-binding sites. We observed that the structure of activated HdeA becomes largely disordered and exposes two hydrophobic patches essential for client interactions. Furthermore, using the pH-dependent chemical exchange saturation transfer (CEST) NMR method, we identified three acid-sensitive regions that act as structural locks in regulating the exposure of the two client-binding sites during the activation process, revealing a multistep activation mechanism of HdeA's chaperone function at the atomic level. Our results highlight the role of intrinsic protein disorder in chaperone function and the self-inhibitory role of ordered structures under nonstress conditions, offering new insights for improving our understanding of protein structure-function paradigms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398119PMC
http://dx.doi.org/10.1074/jbc.RA118.006398DOI Listing

Publication Analysis

Top Keywords

mechanism unfolding-induced
8
unfolding-induced activation
8
client-binding sites
8
chaperone function
8
structural basis
4
basis mechanism
4
activation
4
hdea
4
activation hdea
4
hdea bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!