Graphene-based nanomaterials show great potential in photo-chemotherapy, but their photo-thermal effect is not very satisfactory. Herein, we presented a facile and low-cost strategy to grow Au clusters on the reduced graphene oxide (rGO) sheets aiming to improve photothermal effect. Au clusters with low-concentration was directly conjugated on the surface of rGO by electrostatic forces. To improve its biocompatibility, 3‑(3‑phenylureido) propanoic acid (PPA)-PEG (PPEG) had been introduced as biodegradable backbone to form rGO/Au/PPEG nanohybrids via π-π accumulation. The obtained rGO-based nanohybrids showed excellent biocompatibility, stability, low cytotoxicity, and enhanced photo-thermal conversion efficiency. To verify the synergistic photo-chemotherapy, doxorubicin (DOX) as a drug model had been loaded in rGO/Au/PPEG nanohybrids. The results indicated that rGO/Au/PPEG/DOX exhibited synergistic therapeutic efficacy compared with single chemotherapy or photothermal therapy, endowing this designed rGO-based nanohybrids with great potential for cancer treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2018.10.072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!