Background: Multi-drug resistance (MDR) is one of the main obstacles for treatment of advanced/recurrent hepatocellular carcinoma (HCC). We have previously identified arsenic trioxide (ATO) as an effective metastasis/angiogenesis inhibitor in HCC. Here, we further found that MDR-HCC cells were more sensitive to ATO.

Methods: The MDR-HCC cells were used as experimental models. Biological functions were investigated using cell transfection, polymerase chain reaction, western blot, southwestern blot, immunostaining, immunoprecipitation plus atomic fluorescence spectrometry, and so on.

Results: The MDR-HCC cells underwent high oxidative stress condition, and employed adaptive mechanisms for them to survive; while ATO abolished such mechanisms via targeting the 14-3-3η/nuclear factor kappa B (NF-κB) feedback Loop. Briefly, in MDR cells, the increase of ROS activated NF-κB signaling, which transcriptionally activated 14-3-3η. Meanwhile, the activation of NF-κB can be constitutively maintained by 14-3-3η. As a NF-κB inhibitor, ATO transcriptionally inhibited the 14-3-3η mRNA level. Meanwhile, ATO was also validated to directly bind to 14-3-3η, enhancing the degradation of 14-3-3η protein in an ubiquitination-dependent manner. Knockdown of 14-3-3η reduced the ATO-induced reversal extents of drug resistance in MDR cells.

Conclusion: 14-3-3η/NF-κB feedback loop plays an important role in maintaining the MDR phenotype in HCC. Moreover, via targeting such feedback loop, ATO could be considered as a potential molecular targeted agent for the treatment of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302299PMC
http://dx.doi.org/10.1186/s13046-018-1005-yDOI Listing

Publication Analysis

Top Keywords

feedback loop
16
mdr-hcc cells
12
arsenic trioxide
8
hepatocellular carcinoma
8
14-3-3η/nf-κb feedback
8
resistance mdr
8
14-3-3η
6
ato
5
trioxide reverses
4
reverses chemoresistance
4

Similar Publications

Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.

Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.

View Article and Find Full Text PDF

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.

View Article and Find Full Text PDF

Digital Feedback Loop in Paraxial Fluids of Light: A Gate to New Phenomena in Analog Physical Simulations.

Phys Rev Lett

December 2024

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!