Understanding the drivers behind urban floods is critical for reducing its devastating impacts to human and society. This study investigates the impacts of recent urban development on hydrological runoff and urban flood volumes in a major city located in northern China, and compares the urbanization impacts with the effects induced by climate change under two representative concentration pathways (RCPs 2.6 and 8.5). We then quantify the role of urban drainage system in mitigating flood volumes to inform future adaptation strategies. A geo-spatial database on landuse types, surface imperviousness and drainage systems is developed and used as inputs into the SWMM urban drainage model to estimate the flood volumes and related risks under various urbanization and climate change scenarios. It is found that urbanization has led to an increase in annual surface runoff by 208 to 413%, but the changes in urban flood volumes can vary greatly depending on performance of drainage system along the development. Specifically, changes caused by urbanization in expected annual flood volumes are within a range of 194 to 942%, which are much higher than the effects induced by climate change under the RCP 2.6 scenario (64 to 200%). Through comparing the impacts of urbanization and climate change on urban runoff and flood volumes, this study highlights the importance for re-assessment of current and future urban drainage in coping with the changing urban floods induced by local and large-scale changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.12.184 | DOI Listing |
Sci Rep
January 2025
Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran.
Floods are among the most severe natural hazards, causing substantial damage and affecting millions of lives. These events are inherently multi-dimensional, requiring analysis across multiple factors. Traditional research often uses a bivariate framework relying on historical data, but climate change is expected to influence flood frequency analysis and flood system design in the future.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland.
Flooding remains a critical issue in urban catchments, driven by complex interactions between land use changes, hydrological dynamics, and environmental factors. This study aims to investigate how modifications in Landscape Hydric Potential (LHP) affect flood behavior in the Drwinka River catchment in Krakow, Poland. Given the rapid urbanization and its impacts on hydrological systems, understanding these changes is essential for effective flood management and mitigation.
View Article and Find Full Text PDFACS Omega
December 2024
Enhanced Oil Recovery & Carbon Utilization and Storage Laboratory, Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, India.
This research explores the development of engineered oil-water microemulsions stabilized by a synergistic combination of polymer and surfactant to enhance stability and interfacial properties for improved enhanced oil recovery (EOR). Conventional surfactant-stabilized emulsions often suffer from phase instability and limited wettability alteration during water flooding and chemical injection, hindering the EOR efficiency. In contrast, our formulations incorporating polymers significantly increase the emulsion viscosity and resilience to temperature fluctuations, resulting in enhanced phase stability.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Electronics & Communication Engineering, Sona College of Technology, Salem, Tamil Nadu, India.
Wastewater treatment plants in Coimbatore South are under pressure from rapid urbanization, inadequate infrastructure, and industrial pollution, leading to environmental and public health concerns. This study aimed to identify suitable locations for wastewater treatment plants using a combination of machine learning, remote sensing, and GIS-based multicriteria decision analysis (MCDA). Several datasets were analysed, with the analytical hierarchy process (AHP) assigning weights to factors such as slope (18.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
The frequency of plastic debris entering agricultural land is likely going to increase due to increased discharge into surface waters and more frequent flood events. Microbial biofilm on the surfaces of plastic pollution (known as the 'plastisphere') in freshwater environments often includes human pathogenic bacteria capable of causing disease. Pathogens have been detected on the surface of plastics in freshwater environments, but it is yet to be determined whether plastic debris can also transport pathogens into agricultural fields during flooding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!