A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel polymeric biomaterial poly(butyl-2-cyanoacrylate) nanowires: synthesis, characterization and formation mechanism. | LitMetric

Novel polymeric biomaterial poly(butyl-2-cyanoacrylate) nanowires: synthesis, characterization and formation mechanism.

Colloids Surf B Biointerfaces

Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province, 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

Published: March 2019

Poly(butyl-2-cyanoacrylate) (PBCA) nanoparticles have been widely elaborated for nearly half a century. However, PBCA nanowires (PNWs) were seldom investigated. Here, new polymeric biomaterial PNWs were prepared via emulsion polymerization based on the sodium dodecyl sulfate (SDS)-assisted emulsion process. Results indicated that SDS micelles and PBCA polymer can develop surfactant-polymer complexes by self-assembly at room temperature. SDS concentration was confirmed to be the critical parameter for the association of the surfactant and the polymer. With the addition of SDS (0-40 mM), the interaction between SDS and PBCA led to a series of transitions from nanoparticles to nanowires. These morphology transitions were triggered by changing the electrostatic repulsion in the SDS-PBCA system, confirmed by the variety of zeta potential with increasing molar contents of SDS. To overcome the electrostatic repulsion, the complexes underwent transitions from spherical, worm-like (short-cylindrical), to elongated-cylindrical form. Finally, associated with the results from scanning / transmission electron microscopy (SEM / TEM), the elongated-cylindrical PNWs acquired at 20 mM of SDS were chosen to execute cell viability assay, which showed that they had no toxicity but with good-biocompatibility at the doses ≤ 50 μg/ml. These results indicate that the PNWs prepared by this facile-green and low-toxic strategy can potentially work as promising biomaterials in the biomedicine field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.12.028DOI Listing

Publication Analysis

Top Keywords

polymeric biomaterial
8
pnws prepared
8
electrostatic repulsion
8
sds
6
novel polymeric
4
biomaterial polybutyl-2-cyanoacrylate
4
polybutyl-2-cyanoacrylate nanowires
4
nanowires synthesis
4
synthesis characterization
4
characterization formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!