Pneumococcal infections remain a major public health concern worldwide. The currently available vaccines in the market are based on pneumococcal capsular polysaccharides but they still need to be improved to secure an optimal coverage notably in population at risk. To circumvent this, association of virulence pneumococcal proteins to the polysaccharide valencies has been proposed with the hope to observe an additive - if not synergistic - protective effect. Along this line, the use of the highly conserved and ubiquitous pneumococcal surface adhesin A (PsaA) as a protein carrier for a synthetic pneumococcal oligosaccharide is demonstrated herein for the first time. A tetrasaccharide mimicking functional antigenic determinants from the S. pneumoniae serotype 14 capsular polysaccharide (Pn14TS) was chemically synthesised. The mature PsaA (mPsaA) was expressed in E. coli and purified using affinity chromatography. The Pn14PS was conjugated to mPsaA using maleimide-thiol coupling chemistry to obtain mPsaA-Pn14PS conjugate (protein/sugar molar ratio: 1/5.4). The mPsaA retained the structural conformation after the conjugation and lyophilisation. The prepared glycoconjugate adjuvanted with α-galactosylceramide, a potent activator of invariant Natural Killer T cells, was tested in mice for its immunological response upon subcutaneous injection in comparison with mPsaA alone and a model BSA conjugate (BSA-Pn14PS, used here as a control). Mice immunised with the mPsaA-Pn14TS produced a robust IgG response against mPsaA and against the capsular polysaccharide from pneumococcal serotype 14. These data provide the basis for novel pneumococcal vaccine development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2018.12.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!