Hollow microneedles can help overcome the skin permeation barrier imposed by the stratum corneum and facilitate transcutaneous delivery of nanoparticle delivery systems. In the present study, we investigated the use of the hollow microneedle array for intradermal delivery of polymeric nanoparticles (NPs) in rats. Compared to intravenous and subcutaneous routes of administration, intradermal delivery of polymeric NPs via a hollow microneedle array resulted in a unique pharmacokinetic profile, characterized by an early burst transit through the draining lymph nodes and a relatively limited overall systemic exposure. Based on high local lymphatic concentrations achieved, we investigated the use of this modality for vaccine delivery. A model antigen ovalbumin (OVA) and TLR agonists imiquimod and monophosphoryl Lipid A encapsulated in poly(d,l-lactide-co-glycolide) (PLGA) NPs were used as the vaccine formulation. Compared to soluble OVA-based vaccine, OVA loaded NPs demonstrated faster antibody affinity maturation kinetics. Moreover, antigen loaded NPs delivered via a hollow microneedle array elicited a significantly higher IgG2a antibody response and higher number of interferon (IFN)-γ secreting lymphocytes, both markers of Th1 response, in comparison to antigen loaded NPs delivered by intramuscular injection and soluble antigen delivered through hollow microneedle array. Overall, our results show that hollow microneedle mediated intradermal delivery of polymeric NPs is a promising approach to improve the effectiveness of vaccine formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2018.12.026 | DOI Listing |
Sci Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.
View Article and Find Full Text PDFMethods
December 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK. Electronic address:
Effective drug delivery to the posterior segment of the eye remains a challenge owing to the limitations of conventional methods such as intravitreal injections, which are associated with significant side effects. This study explored the use of hollow microneedles (HMNs) for localized intrascleral drug delivery as a minimally invasive alternative. Stainless steel HMNs with bevel angles of 30°, 45°, 60°, and 75° were fabricated using wire electron discharge machining.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
Transdermal drug delivery presents numerous advantages over conventional administration routes, including non-invasiveness, enhanced patient adherence, circumvention of hepatic first-pass metabolism, self-administration capabilities, controlled release, and increased bioavailability. Nevertheless, the barrier function of stratum corneum limits this strategy to molecules possessing requisite physicochemical attributes. To expand the field of transdermal delivery, researchers have pioneered physical enhancement techniques, with micron-sized needles emerging as a particularly promising platform for the transdermal and intradermal delivery of therapeutic agents across a spectrum of molecular sizes.
View Article and Find Full Text PDFAnal Chem
December 2024
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
Chronic wound management requires continuous monitoring to assess healing and guide treatment. We developed a hollow microneedle array patch integrated with a lateral flow immunoassay strip to address the need for convenient, home-based diagnostics. This device extracts wound exudate directly from the wound matrix, overcoming the limitations of conventional swab sampling, which relies on surface exudate collection.
View Article and Find Full Text PDFLab Chip
December 2024
Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy.
Microneedles hold the potential for enabling shallow skin penetration applications where biomarkers are extracted from the interstitial fluid (ISF) and drugs are injected in a painless and effective manner. To this purpose, needles must have an inner channel. Channeled needles were demonstrated using custom silicon microtechnology, having several needle tip geometries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!