Intra-articular administration of glucocorticoids such as dexamethasone is a common treatment for osteoarthritic inflammation and pain. Despite its potent anti-inflammatory properties, multiple barriers hinder the drug's effectiveness in the articular space. In particular, the high turnover rate of the synovial fluid and the dense cartilage extracellular matrix (ECM) lead to poor drug penetration into cartilage. In order to increase the infiltration and retention time, two dexamethasone prodrugs were developed. Firstly, dexamethasone was conjugated to polycationic chitosan, which led to deep and sustained infiltration of the drug into full thickness cartilage, due to its strong electrostatic interactions with the high negative fixed charges of the cartilage ECM. Secondly, dexamethasone was conjugated to a collagen type II-binding peptide, WYRGRL, and this prodrug was shown to be retained in the deep zones of cartilage through specific interactions with cartilage-specific collagen type II bundles. In both cases, active dexamethasone was released from the carrier by ester linkage hydrolysis. Complexing dexamethasone with either chitosan or collagen type II-affinity carriers increased its binding and therapeutic efficacy inside cartilage, compared to the free drug. Both dexamethasone conjugates significantly reduced levels of inflammatory markers and slowed the loss of glycosaminoglycans in an ex vivo model. A single dose of a cartilage-targeting dexamethasone prodrug represents a promising alternative to the repetitive glucocorticoid injections needed to compensate for its rapid clearance from the joint cavity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2018.12.025 | DOI Listing |
World J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
Osteoarthr Cartil Open
March 2025
OrthoSport Victoria, Level 5, 89 Bridge Rd, Richmond, Victoria, Australia.
Objective: To compare urinary C-terminal cross-linked telopeptide of type II collagen (u-CTX-II) concentrations and trends as measured by two different commercially available enzyme-linked immunosorbent assays (ELISA) in a cohort of patients in the first year following anterior cruciate ligament (ACL) reconstruction.
Design: 22 ACL-injured patients undergoing reconstructive surgery (mean age 25.2 (SD 8.
IBRO Neurosci Rep
June 2025
Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France.
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Recent studies have attempted to characterize the layer-specific mechanical and microstructural properties of the aortic tissues in either normal or pathological state to understand its structural-mechanical property relationships. However, layer-specific tissue mechanics and compositions of normal and dissected ascending aortas have not been thoroughly compared with a statistical conclusion obtained. Eighteen ascending aortic specimens were harvested from 13 patients with type A aortic dissection and 5 donors without aortic diseases, with each specimen further excised to obtain three tissue samples including an intact wall, an intima-media layer and an adventitia layer.
View Article and Find Full Text PDFNarra J
December 2024
Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Transforming growth factor-beta 1 () and type I collagen play crucial roles in the pathogenesis of diabetic bladder disease (DBD). Moderate-intensity aerobic exercise increases antioxidant activity to help manage DBD. The aim of this study was to evaluate the effect of moderate-intensity aerobic exercise on the expression of and type I collagen in the detrusor and lamina propria of the bladder in a type 2 diabetes mellitus (T2DM) rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!