The present article summarizes the main events involved in the isthmic organizer and optic tectum determination and analyses how optic tectum patterning is translated, by the organized operation of several specific cell behaviors, into the terminally differentiated optic tectum. The paper proposes that this assembling of temporally/spatially organized cell behaviors could be incorporated into a wider notion of patterning and that, given the asymmetric organization of the developing optic tectum, the notion of "sensitive period" does not capture the whole complexity of midbrain development and the pathogenesis of congenital disorders. The cell behaviors involved in the optic tectum development are organized in time and space by the isthmic organizer. A comprehensive description of the normal optic tectum development, and also its alterations, should consider both domains. Significantly, the identity of each neuronal cohort depends critically on its "time and place of birth". Both parameters must be considered at once to explain how the structural and functional organization of the optic tectum is elaborated. The notion of "patterning" applies only to the early events of the optic tectum development. Besides, the notion of "sensitive period" considers only a temporal domain and disregards the asymmetric organization of the developing optic tectum. The present paper proposes that these notions might be re-defined: (a) a wider meaning of the term patterning and (b) a replacement of the term "sensitive period" by a more precise concept of "sensitive temporal/spatial window".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijdevneu.2018.12.003 | DOI Listing |
J Neurophysiol
December 2024
Dept. of Biol., University of Massachusetts Amherst, , Amherst, MA.
Lab rodent species commonly used to study the visual system and its development (hamsters, rats, and mice) are crepuscular/nocturnal, altricial, and possess simpler visual systems than carnivores and primates. To widen the spectra of studied species, here we introduce an alternative model, the Chilean degu (). This diurnal, precocial Caviomorph rodent has a cone enriched, well-structured retina, and well-developed central visual projections.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
The widespread use of plasticizers like phthalate esters (PAEs) has led to environmental and health concerns. The neurobehavioral toxicity of these compounds in marine environments, particularly regulated by the "brain-gut" axis, remains unclear, especially concerning wild demersal fish of high ecological value. Our investigation into the behavioral effects of three common PAEs, i.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200032, China. Electronic address:
Normal perception of visual information relies not only on the quantity and quality of retinal ganglion cells (RGCs), but also on the integrity of the visual pathway, within which RGC central projection predominates. However, the exact changes of RGC central projection under particular pathological conditions remain to be elucidated. Here, we report a whole-brain clearing method modified from iDISCO for 3D visualization of RGC central projection.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2024
Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany.
J Neurophysiol
January 2025
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
We normally perceive a stable visual environment despite eye movements. To achieve such stability, visual processing integrates information across a given saccade, and laboratory hallmarks of such integration are robustly observed by presenting brief perisaccadic visual probes. In one classic phenomenon, probe locations are grossly mislocalized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!