Background: It has previously been reported that EEG sigma (10-15 Hz) activity during sleep exhibits infraslow oscillations (ISO) with a period of 50 s. However, a detailed analysis of the ISO of individually identified sleep spindles is not available.
New Method: We investigated basic properties of ISO during baseline sleep of 34 healthy young human participants using new and established methods. The analyses focused on fast sleep spindle and sigma activity (13-15 Hz) in NREM stage 2 and slow wave sleep (SWS). To describe ISO in sigma activity we analyzed power of power of the EEG signal. For the study of ISO in sleep spindle activity we applied a new method in which the EEG signal was reduced to a spindle on/off binary square signal. Its spectral properties were contrasted to that of a square signal wherein the same spindles and also the inter spindle intervals were permutated randomly. This approach was validated using surrogate data with imposed ISO modulation.
Results: We confirm the existence of ISO in sigma activity albeit with a frequency below the previously reported 0.02 Hz. These ISO are most prominent in the high sigma band and over the centro-parieto-occipital regions. A similar modulation is present in spindle activity. ISO in sleep spindles are most prominent in the centro-parieto-occipital regions, left hemisphere and second half of the night independent of the number of spindles.
Conclusions: The comparison of spectral properties of binary event signals and permutated event signals is effective in detecting slow oscillatory phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390176 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2018.12.002 | DOI Listing |
Ann Clin Transl Neurol
January 2025
Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.
Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.
View Article and Find Full Text PDFSleep Adv
December 2024
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Study Objectives: Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC.
View Article and Find Full Text PDFNeurology
January 2025
Department of Neurology, Massachusetts General Hospital, Boston.
Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115.
Sleep spindles are cortical electrical oscillations considered critical for memory consolidation and sleep stability. The timing and pattern of sleep spindles are likely to be important in driving synaptic plasticity during sleep as well as preventing disruption of sleep by sensory and internal stimuli. However, the relative importance of factors such as sleep depth, cortical up/down-state, and temporal clustering in governing sleep spindle dynamics remains poorly understood.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215, USA.
Pain therapies that alleviate both pain and sleep disturbances may be the most effective for pain relief, as both chronic pain and sleep loss render the opioidergic system, targeted by opioids, less sensitive and effective for analgesia. Therefore, we first studied the link between sleep disturbances and the activation of nociceptors in two acute pain models. Activation of nociceptors in both acute inflammatory (AIP) and opto-pain models led to sleep loss, decreased sleep spindle density, and increased sleep fragmentation that lasted 3 to 6 hours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!