Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. The spirochetes are transmitted from mammalian and avian reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and then disseminate haematogenously to various organs, a process that requires this pathogen to evade host complement, an innate immune defence system. CspZ, a spirochete surface protein, facilitates resistance to complement-mediated killing in vitro by binding to the complement regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated in vitro or during initiation of infection in vivo have been a major hurdle in delineating the role of this protein in pathogenesis. Here, we show that treatment of B. burgdorferi with human blood induces CspZ production and enhances resistance to complement. By contrast, a cspZ-deficient mutant and a strain that expressed an FH-nonbinding CspZ variant were impaired in their ability to cause bacteraemia and colonize tissues of mice or quail; virulence of these mutants was however restored in complement C3-deficient mice. These novel findings suggest that FH binding to CspZ facilitates B. burgdorferi complement evasion in vivo and promotes systemic infection in vertebrate hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336514PMC
http://dx.doi.org/10.1111/cmi.12998DOI Listing

Publication Analysis

Top Keywords

complement evasion
8
systemic infection
8
infection vertebrate
8
vertebrate hosts
8
complement
6
cspz
5
blood treatment
4
treatment lyme
4
lyme borreliae
4
borreliae demonstrates
4

Similar Publications

Leptospirosis is a zoonosis caused by spirochete Leptospira. Pathogenic leptospires evade the Complement System, enabling their survival upon contact with normal human serum in vitro. In a previous study, we demonstrated that proteases secreted by pathogenic leptospires cleave several Complement proteins, including C3 and the opsonins C3b and iC3b.

View Article and Find Full Text PDF

The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) remains one of the most lethal malignancies globally, with limited therapeutic options. Cancer-associated fibroblasts (CAFs), a diverse population of stromal cells within the tumor microenvironment (TME), play a central role in tumor progression and therapeutic resistance. However, the specific markers identifying tumor-promoting CAF subsets in GC have yet to be fully characterized.

View Article and Find Full Text PDF

Polymorphic microbial immune evasion proteins dictate the pathogen species- or strain-specific virulence. Metals can impact how microbial proteins confer host-pathogen interactions, but whether this activity can be allelically variable is unclear. Here, we investigate the polymorphic CspZ protein of Lyme disease (LD) spirochete bacteria to assess the role of metals in protein-protein interaction.

View Article and Find Full Text PDF
Article Synopsis
  • Schistosomes are skilled at evading human immunity, particularly the complement system, allowing them to survive in human blood for years; this study explores how they interact with this immune response.
  • The research shows that newly formed schistosomula are initially very vulnerable to complement attack, but they can rapidly boost their survival rate, especially when they recruit complement regulator factor H to avoid destruction.
  • The use of the drug praziquantel increases the susceptibility of schistosomula to complement-mediated killing, suggesting that further investigation into factor H's role could help develop new treatments against schistosomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!