A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Word sense disambiguation using hybrid swarm intelligence approach. | LitMetric

Word sense disambiguation using hybrid swarm intelligence approach.

PLoS One

Broadband and Networking (BBNET) Research Group, Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, Melaka, Malaysia.

Published: May 2019

Word sense disambiguation (WSD) is the process of identifying an appropriate sense for an ambiguous word. With the complexity of human languages in which a single word could yield different meanings, WSD has been utilized by several domains of interests such as search engines and machine translations. The literature shows a vast number of techniques used for the process of WSD. Recently, researchers have focused on the use of meta-heuristic approaches to identify the best solutions that reflect the best sense. However, the application of meta-heuristic approaches remains limited and thus requires the efficient exploration and exploitation of the problem space. Hence, the current study aims to propose a hybrid meta-heuristic method that consists of particle swarm optimization (PSO) and simulated annealing to find the global best meaning of a given text. Different semantic measures have been utilized in this model as objective functions for the proposed hybrid PSO. These measures consist of JCN and extended Lesk methods, which are combined effectively in this work. The proposed method is tested using a three-benchmark dataset (SemCor 3.0, SensEval-2, and SensEval-3). Results show that the proposed method has superior performance in comparison with state-of-the-art approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301655PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208695PLOS

Publication Analysis

Top Keywords

word sense
8
sense disambiguation
8
meta-heuristic approaches
8
proposed method
8
word
4
disambiguation hybrid
4
hybrid swarm
4
swarm intelligence
4
intelligence approach
4
approach word
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!