Self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM) are commonly used by type 1 diabetes (T1D) patients to measure glucose concentrations. The proposed adaptive basal-bolus algorithm (ABBA) supports inputs from either SMBG or CGM devices to provide personalised suggestions for the daily basal rate and prandial insulin doses on the basis of the patients' glucose level on the previous day. The ABBA is based on reinforcement learning, a type of artificial intelligence, and was validated in silico with an FDA-accepted population of 100 adults under different realistic scenarios lasting three simulated months. The scenarios involve three main meals and one bedtime snack per day, along with different variabilities and uncertainties for insulin sensitivity, mealtime, carbohydrate amount, and glucose measurement time. The results indicate that the proposed approach achieves comparable performance with CGM or SMBG as input signals, without influencing the total daily insulin dose. The results are a promising indication that AI algorithmic approaches can provide personalised adaptive insulin optimization and achieve glucose control-independent of the type of glucose monitoring technology.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2018.2887067DOI Listing

Publication Analysis

Top Keywords

adaptive basal-bolus
8
based reinforcement
8
reinforcement learning
8
glucose monitoring
8
provide personalised
8
glucose
7
dual mode
4
mode adaptive
4
basal-bolus advisor
4
advisor based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!