Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/RBME.2018.2887301DOI Listing

Publication Analysis

Top Keywords

wearable sensors
24
chronic disease
20
flexible stretchable
16
disease care
16
stretchable wearable
8
nano-based enhancement
8
flexibility stretchability
8
wearable
7
sensors
7
chronic
6

Similar Publications

Background: Early diagnosis of degenerative cervical myelopathy (DCM) is often challenging due to subtle, non-specific symptoms, limited disease awareness and a lack of definitive diagnostic criteria. As primary care physicians are typically the first to encounter patients with early DCM, equipping them with effective screening tools is crucial for reducing diagnostic delays and improving patient outcomes. This systematic review evaluates the efficacy of quantitative screening methods for DCM that can be implemented in primary care settings.

View Article and Find Full Text PDF

Building an open-source community to enhance autonomic nervous system signal analysis: DBDP-autonomic.

Front Digit Health

January 2025

Khoury College of Computer Sciences and Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States.

Smartphones and wearable sensors offer an unprecedented ability to collect peripheral psychophysiological signals across diverse timescales, settings, populations, and modalities. However, open-source software development has yet to keep pace with rapid advancements in hardware technology and availability, creating an analytical barrier that limits the scientific usefulness of acquired data. We propose a community-driven, open-source peripheral psychophysiological signal pre-processing and analysis software framework that could advance biobehavioral health by enabling more robust, transparent, and reproducible inferences involving autonomic nervous system data.

View Article and Find Full Text PDF

Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on -acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method.

View Article and Find Full Text PDF

Is the freezing index a valid outcome to assess freezing of gait during turning in Parkinson's disease?

Front Neurol

January 2025

Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), KU Leuven, Leuven, Belgium.

Introduction: Freezing of gait (FOG) is a disabling symptom for people with Parkinson's disease (PwPD). Turning on the spot for one minute in alternating directions (360 turn) while performing a cognitive dual-task (DT) is a fast and sensitive way to provoke FOG. The FOG-index is a widely used wearable sensor-based algorithm to quantify FOG severity during turning.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!