Angiotensin II Causes Biphasic STAT3 Activation Through TLR4 to Initiate Cardiac Remodeling.

Hypertension

From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).

Published: December 2018

Evidence indicates that Ang II (angiotensin II) activates STAT3 (signal transducer and activator of transcription 3) in cardiomyocytes. However, the mechanisms underlying STAT3 activation and downstream responses are not fully known. In this study, we show that Ang II caused biphasic STAT3 activation in cardiomyocytes. A rapid and early activation was mediated by direct association between TLR4 (toll-like receptor-4) and STAT3. This early activation increased IL-6 (interleukin-6) production, which in turn, induced the second STAT3 activation through the IL-6/gp130 (glycoprotein 130)/JAK2 (Janus-family tyrosine kinases 2) pathway, resulting in unregulated expression of genes for cardiac remodeling. Moreover, STAT3 inhibition or TLR4 knockout in mice protected against Ang II-induced hypertrophy, fibrosis, and cardiac functional deficits. Thus, Ang II-induced STAT3 activation in cardiomyocytes was biphasic, providing a sequential induction of IL-6 and myocardial remodeling genes, respectively. This work supports a novel mechanism on STAT3 activation in Ang II-induced cardiac dysfunction and remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11860DOI Listing

Publication Analysis

Top Keywords

stat3 activation
24
ang ii-induced
12
stat3
9
biphasic stat3
8
activation
8
cardiac remodeling
8
activation cardiomyocytes
8
early activation
8
ang
5
angiotensin biphasic
4

Similar Publications

Triple-negative breast cancer (TNBC) represents an aggressive form of breast cancer with few available therapeutic options. Chemotherapy, particularly with drugs like doxorubicin (DOX), remains the cornerstone of treatment for this challenging subtype. However, the clinical utility of DOX is hampered by adverse effects that escalate with higher doses and drug resistance, underscoring the need for alternative therapies.

View Article and Find Full Text PDF

Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement.

Pharmaceuticals (Basel)

November 2024

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.

: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression.

View Article and Find Full Text PDF

The COVID-19 infection caused by SARS-CoV-2 in late 2019 posed unprecedented global health challenges of massive proportions. The persistent effects of COVID-19 have become a subject of significant concern amongst the medical and scientific community. This article aims to explore the probability of a link between the COVID-19 infection and the risk of lung cancer development.

View Article and Find Full Text PDF

Molecular Mechanisms and Signaling Pathways Underlying the Therapeutic Potential of Thymoquinone Against Colorectal Cancer.

Molecules

December 2024

Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

Thymoquinone (TQ), a bioactive compound derived from , has garnered significant attention for its potential as a natural anti-cancer agent, particularly in the context of colorectal cancer. This review provides a detailed synthesis of the current literature on the anti-cancer properties of TQ in colorectal cancer cells, exploring both in vitro and in vivo studies to elucidate its mechanisms of action. TQ effectively induces apoptosis, inhibits cell proliferation, and reduces metastasis in colorectal cancer cells by modulating key molecular pathways such as PI3K/AKT/mTOR, NF-κB, STAT3, and MAPK.

View Article and Find Full Text PDF

Enhancer of zeste homolog 2 (EZH2) is a methyltransferase involved in cell cycle regulation, cell differentiation, and cell death and plays a role in modulating the immune response. Although it mainly functions by catalyzing the tri-methylation of H3 histone on K27 (H3K27), to inhibit the transcription of target genes, EZH2 can directly methylate several transcription factors or form complexes with them, regulating their functions. EZH2 expression/activity is often dysregulated in cancer, contributing to carcinogenesis and immune escape, thereby representing an important target in anti-cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!