A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. | LitMetric

Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles.

ACS Appl Mater Interfaces

Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland.

Published: January 2019

Despite its use as a highly efficient and reusable catalyst in research and industrial settings, cerium oxide nanoparticles or nanoceria have yet to gain a foothold in the biomedical field. A variety of beneficial effects of nanoceria have been demonstrated, including its use as an inorganic nanoenzyme to mimic antioxidant enzymes, to protect mammalian cells, and to suppress microbial growth. While these properties are of high interest for wound-management applications, the literature offers contradicting reports on toxicity and enzymatic activity of nanoceria. These discrepancies can be attributed to differences between synthesis methods and insufficient physicochemical characterization, leading to incomparable studies. The activity of nanoceria is mostly governed by its Ce/Ce ratio which needs to be controlled to compare different nanoceria systems. In this work, we demonstrate that liquid-feed flame spray pyrolysis offers excellent control over the oxidation state in a one-step synthesis of nanoceria. This control allows a comprehensive comparison of different types of ceria nanoparticles. We connect physicochemical characteristics to biomedically relevant properties such as superoxide dismutase and catalase mimicry, human monocyte and macrophage protection, and antimicrobial activity. Furthermore, we demonstrate how the synthesis method also allows tailoring the properties of ceria/bioglass hybrid nanoparticles, thus creating nanoparticles with manifold biomedical prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b18778DOI Listing

Publication Analysis

Top Keywords

ceria/bioglass hybrid
8
hybrid nanoparticles
8
activity nanoceria
8
nanoceria
6
nanoparticles
5
engineering bioactivity
4
bioactivity flame-made
4
flame-made ceria
4
ceria ceria/bioglass
4
nanoparticles despite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!