Endothelial Cells Deconjugate Resveratrol Metabolites to Free Resveratrol: A Possible Role in Tissue Factor Modulation.

Mol Nutr Food Res

Functional Nutrition, Oxidation, Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.

Published: February 2019

Scope: The antithrombotic effects of resveratrol (RV) and its derivatives remain unknown. The objective is to evaluate the modulatory effects of RV, its glucoside form, piceid, and its biological metabolites (RV-3-O-β-d-glucuronide, RV-4'-O-d-glucuronide, and RV-3-O-sulfate) on tissue factor (TF). Moreover, the endothelial metabolism of RV is assessed.

Methods And Results: Human aortic endothelial cells (HAECs) are incubated with trans-piceid, trans-RV, or their biological metabolites and stimulated with tumor necrosis factor-α (TNF-α). TF activity, protein levels, and mRNA expression are determined in cell lysates. Moreover, RV conjugation (phase-II-metabolism) to its sulfated or glucuronidated metabolites and their deconjugation to their parent compound (free RV) are also assessed in cell lysates and culture media. RV decreased TF activity, protein levels, and mRNA expression, whereas piceid and RV metabolites (RVmet) had no effects. RV-3-O-sulfate was the main metabolite generated in the endothelium, while RVmet are deconjugated to free RV. Isomerization of trans-RV and its trans-metabolites to their cis-forms is observed.

Conclusions: RV exerts antithrombotic effects by modulating TF. RVmet and piceid does not exert this effect. However, the capacity of endothelial cells to deconjugate RVmet to free RV indicates that RVmet function as an endothelial reservoir for RV regeneration, thus, contributing to the antithrombotic effects of RV.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201800715DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
antithrombotic effects
12
cells deconjugate
8
tissue factor
8
biological metabolites
8
activity protein
8
protein levels
8
levels mrna
8
mrna expression
8
cell lysates
8

Similar Publications

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions .

View Article and Find Full Text PDF

Understanding the Importance of the Small Artery Media-Lumen Ratio: Past and Present.

Basic Clin Pharmacol Toxicol

February 2025

Department of Biomedicine, Aarhus University, Aarhus, Denmark.

The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!