Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel light-responsive nanoassemblies with switchable size and enzymatic activity are built from a protein and a water-soluble spiropyran. Assemblies are created by electrostatic self-assembly in aqueous solution such that the photochromic property of the spiropyran enables light responsiveness. Upon visible light exposure, the aggregate size increases from 200 to 400 nm. The enzyme retains its activity upon aggregation into the assembly, while it decreases through visible light irradiation. Fundamentally, we show how the two different spiropyran isomers, the open-ring merocyanine form and the closed-ring spiropyran form, bind differently to the protein, which triggers the assembly size and use of thermodynamic data to understand the binding process and the size response. Thus, as a proof of concept, a self-assembly driven light-tunable enzyme activity in conjunction with a triggerable assembly size is demonstrated for a model system. The concept bears future potential for various possible biological applications ranging from genetic control over vaccine applications to the detection of certain proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.8b01605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!